相信很多人都会有一个疑问,我们为何要去阅读源码,工作上又用不上,这个问题很棒,我们就先从使用出发,然后分析这些用法的实现原理,这样才能体现出阅读源码的意义。
- 基于 Handler 和 Looper 拦截全局崩溃(主线程),避免 APP 退出。
- 基于 Handler 和 Looper 实现 ANR 监控。
- 基于 Handler 实现单线程的线程池。
实现代码
class MyApplication : Application() {
override fun onCreate() {
super.onCreate()
var startWorkTimeMillis = 0L
Looper.getMainLooper().setMessageLogging {
if (it.startsWith(">>>>> Dispatching to Handler")) {
startWorkTimeMillis = System.currentTimeMillis()
} else if (it.startsWith("<<<<< Finished to Handler")) {
val duration = System.currentTimeMillis() - startWorkTimeMillis
if (duration > 100) {
Log.e("主线程执行耗时过长","$duration 毫秒,$it")
}
}
}
val handler = Handler(Looper.getMainLooper())
handler.post {
while (true) {
try {
Looper.loop()
} catch (e: Throwable) {
// TODO 主线程崩溃,自行上报崩溃信息
if (e.message != null && e.message!!.startsWith("Unable to start activity")) {
android.os.Process.killProcess(android.os.Process.myPid())
break
}
e.printStackTrace()
}
}
}
Thread.setDefaultUncaughtExceptionHandler { thread, e ->
e.printStackTrace()
// TODO 异步线程崩溃,自行上报崩溃信息
}
}
}
通过上面的代码就可以就可以实现拦截UI线程的崩溃,耗时性能监控。但是也并不能够拦截所有的异常,如果在Activity的onCreate出现崩溃,导致Activity创建失败,那么就会显示黑屏。
ANR获取堆栈信息《Android:基于 Handler、Looper 实现 ANR 监控,获取堆栈》
源码剖析
通过上面简单的代码,我们就实现崩溃和ANR的拦截和监控,但是我们可能并不知道是为何实现的,包括我们知道出现了ANR,但是我们还需要进一步分析为何处出现ANR,如何解决。今天分析的问题有:
- 如何拦截全局崩溃,避免APP退出。
- 如何实现 ANR 监控。
- 利用 Handler 实现单线程池功能。
- Activity 的生命周期为什么用 Handler 发送执行。
- Handler 的延迟操作如何实现。
涉及的源码
/java/android/os/Handler.java
/java/android/os/MessageQueue.java
/java/android/os/Looper.java
/java/android.app/ActivityThread.java
我们先从APP启动开始分析,APP的启动方法是在ActivityThread中,在main方法中创建了主线程的Looper,也就是当前进程创建。并且在main方法的最后调用了 Looper.loop()
,在这个方法中处理主线程的任务调度,一旦执行完这个方法就意味着APP被退出了,如果我们要避免APP被退出,就必须让APP持续执行Looper.loop()。
package android.app;
public final class ActivityThread extends ClientTransactionHandler {
...
public static void main(String[] args) {
...
Looper.prepareMainLooper();
...
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
}
Looper.loop()
那我们进一步分析Looper.loop()
方法,在这个方法中写了一个循环,只有当 queue.next() == null
的时候才退出,看到这里我们心里可能会有一个疑问,如果没有主线程任务,是不是Looper.loop()
方法就退出了呢?实际上queue.next()
其实就是一个阻塞的方法,如果没有任务或没有主动退出,会一直在阻塞,一直等待主线程任务添加进来。
当队列有任务,就会打印信息 Dispatching to ...
,然后就调用 msg.target.dispatchMessage(msg);
执行任务,执行完毕就会打印信息 Finished to ...
,我们就可以通过打印的信息来分析 ANR,一旦执行任务超过5秒就会触发系统提示ANR,但是我们对自己的APP肯定要更加严格,我们可以给我们设定一个目标,超过指定的时长就上报统计,帮助我们进行优化。
public final class Looper {
final MessageQueue mQueue;
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what);
}
try {
msg.target.dispatchMessage(msg);
} finally {}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
msg.recycleUnchecked();
}
}
public void quit() {
mQueue.quit(false);
}
}
如果主线程发生了异常,就会退出循环,意味着APP崩溃,所以我们我们需要进行try-catch,避免APP退出,我们可以在主线程再启动一个 Looper.loop()
去执行主线程任务,然后try-catch这个Looper.loop()方法,就不会退出。
基于 Handler 实现单线程的线程池
从上面的 Looper.loop()
,我们可以利用 Handler 实现单线程池功能,而且这个线程池和主线程一样拥有立刻执行post()
、延迟执行postDelayed()
、定时执行postAtTime()
等强大功能。
// 错误用法
var handler: Handler? = null
Thread({
handler = Handler()
}).start()
当我们在异步线程执行上面的代码,就会报错 Can't create handler inside thread Thread[Thread-2,5,main] that has not called Looper.prepare()
。 这个是因为 Handler 的工作是依靠 Looper ,必须为线程创建 Looper 才能正常功能,正确的用法如下:
// 正确用法
var handler: Handler? = null
Thread({
Looper.prepare()
handler = Handler()
Looper.loop()
}).start()
测试:
button.setOnClickListener {
handler?.post {
println(Thread.currentThread())
}
handler?.post {
println(Thread.currentThread())
}
}
输出结果:
System.out: Thread[Thread-2,5,main]
System.out: Thread[Thread-2,5,main]
HandlerThread
HandlerThread 是 Android 对Thread的封装,增加了Handler的支持,实现就是实现了前面例子的功能
val handlerThread = HandlerThread("test")
handlerThread.start()
handler = Handler(handlerThread.looper)
MessageQueue 源码剖析
我们都知道Handler的功能非常丰富,拥有立刻执行post()
、延迟执行postDelayed()
、定时执行postAtTime()
等执行方式。下面就从源码分析是如何实现的。
public final class MessageQueue {
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
}
MessageQueue.next() 是一个带有阻塞的方法,只有退出或者有任务才会return,起阻塞的实现是使用Native层的 nativePollOnce()
函数,如果消息队列中没有消息存在nativePollOnce就不会返回,一直处于Native层等待状态。直到调用 quit()
退出或者调用 enqueueMessage(Message msg, long when)
有新的任务进来调用了Native层的nativeWake()
函数,才会重新唤醒。 android_os_MessageQueue.cpp
nativePollOnce(long ptr, int timeoutMillis)
nativePollOnce
是一个带有两个参数的Native函数,第一个参数是作为当前任务队列ID;第二个参数是等待时长,如果是-1,就代表无消息,会进入等待状态,如果是 0,再次查找未等待的消息。如果大于0,就等到指定时长然后返回。
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
在这行代码进行延时的赋值,从而实现postDelayed、postAtTime的功能
enqueueMessage()
看到这里我们可能会有一个疑问,既然是队列,先进先出的原则,那么以下代码输出的结果是如何?
handler?.postDelayed({ println("任务1") },5000)
handler?.post { println("任务2") }
handler?.postDelayed({ println("任务3") },3000)
// 输出结果
任务2
任务3
任务1
之所以是如此,是因为在 enqueueMessage(Message msg, long when)
添加任务的时候已经就已经按照执行的时间要求做好了排序。
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
总结
经过上述的分析,我觉得弄懂Handler和Looper MessageQueue还是很有意义的,可以帮助我们更好处理崩溃、ANR、Handler的使用等。
最后这里是关于我自己的Android 学习,面试文档,视频收集大整理,有兴趣的伙伴们可以看看~