pytorch 学习笔记 part14 过拟合欠拟合及解决方案

  • Post author:
  • Post category:其他




1.一些概念

训练误差(training error)指模型在训练数据集上表现出的误差

泛化误差(generalization error)指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。

机器学习模型应关注降低泛化误差。



2.多项式拟合实验

# %matplotlib inline
import torch
import numpy as np
import sys
sys.path.append(r"D:\project\fitting学习")
import d2lzh1981 as d2l
print(torch.__version__)



初始化模型参数

# n_train, n_test分别指训练样本数和测试样本数
n_train, n_test, true_w, true_b = 100, 100, [1.2, -3.4, 5.6], 5
# features初始化为x
features = torch.randn((n_train + n_test, 1))
# 那么这里poly_features就为x,x^2,x^3
poly_features = torch.cat((features, torch.pow(features, 2), torch.pow(features, 3)), 1) 
labels = (true_w[0] * poly_features[:, 0] + true_w[1] * poly_features[:, 1]
          + true_w[2] * poly_features[:, 2] + true_b)
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
features[:2], poly_features[:2], labels[:2]



定义、训练和测试模型

首先定义一个画图函数用于观察

def semilogy(x_vals, y_vals, x_label, y_label, x2_vals=None, y2_vals=None,
             legend=None, figsize=(3.5, 2.5)):
    # d2l.set_figsize(figsize)
    d2l.plt.xlabel(x_label)
    d2l.plt.ylabel(y_label)
    d2l.plt.semilogy(x_vals, y_vals)
    if x2_vals and y2_vals:
        d2l.plt.semilogy(x2_vals, y2_vals, linestyle=':')
        d2l.plt.legend(legend)

定义一个可以用来训练并打印训练误差和泛化误差的函数

num_epochs, loss = 100, torch.nn.MSELoss()

def fit_and_plot(train_features, test_features, train_labels, test_labels):
    # 初始化网络模型
    net = torch.nn.Linear(train_features.shape[-1], 1)
    # 通过Linear文档可知,pytorch已经将参数初始化了,所以我们这里就不手动初始化了
    
    # 设置批量大小
    batch_size = min(10, train_labels.shape[0])    
    dataset = torch.utils.data.TensorDataset(train_features, train_labels)      # 设置数据集
    train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True) # 设置获取数据方式
    
    optimizer = torch.optim.SGD(net.parameters(), lr=0.01)                      # 设置优化函数,使用的是随机梯度下降优化
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for X, y in train_iter:                                                 # 取一个批量的数据
            l = loss(net(X), y.view(-1, 1))                                     # 输入到网络中计算输出,并和标签比较求得损失函数
            optimizer.zero_grad()                                               # 梯度清零,防止梯度累加干扰优化
            l.backward()                                                        # 求梯度
            optimizer.step()                                                    # 迭代优化函数,进行参数优化
        train_labels = train_labels.view(-1, 1)
        test_labels = test_labels.view(-1, 1)
        train_ls.append(loss(net(train_features), train_labels).item())         # 将训练损失保存到train_ls中
        test_ls.append(loss(net(test_features), test_labels).item())            # 将测试损失保存到test_ls中
    print('final epoch: train loss', train_ls[-1], 'test loss', test_ls[-1])    
    semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
             range(1, num_epochs + 1), test_ls, ['train', 'test'])
    print('weight:', net.weight.data,
          '\nbias:', net.bias.data)



三阶多项式拟合(正常)

fit_and_plot(poly_features[:n_train, :], poly_features[n_train:, :], labels[:n_train], labels[n_train:])

在这里插入图片描述



线性函数拟合(欠拟合)

前面输入的是poly_features,而这里我们输入features

fit_and_plot(features[:n_train, :], features[n_train:, :], labels[:n_train], labels[n_train:])

来看一下结果

在这里插入图片描述



训练样本不足(过拟合)

这里也是输入poly_features,但是只有0和1

fit_and_plot(poly_features[0:2, :], poly_features[n_train:, :], labels[0:2], labels[n_train:])

在这里插入图片描述



3.方法






L

2

L_2







L










2





















范数正则化(regularization)

在这里插入图片描述



高维线性回归实验从零开始的实现

在这里插入图片描述

#%matplotlib inline
import torch
import torch.nn as nn
import numpy as np
import sys
sys.path.append(r"D:\project\fitting学习")
import d2lzh1981 as d2l

print(torch.__version__)



初始化模型参数

n_train, n_test, num_inputs = 20, 100, 200
true_w, true_b = torch.ones(num_inputs, 1) * 0.01, 0.05

features = torch.randn((n_train + n_test, num_inputs))
labels = torch.matmul(features, true_w) + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
train_features, test_features = features[:n_train, :], features[n_train:, :]
train_labels, test_labels = labels[:n_train], labels[n_train:]
# 定义参数初始化函数,初始化模型参数并且附上梯度
def init_params():
    w = torch.randn((num_inputs, 1), requires_grad=True)
    b = torch.zeros(1, requires_grad=True)
    return [w, b]



定义L2范数惩罚项

将权重的每个元素平方再求和

def l2_penalty(w):
    return (w**2).sum() / 2



定义训练和测试

batch_size, num_epochs, lr = 1, 100, 0.003
net, loss = d2l.linreg, d2l.squared_loss

dataset = torch.utils.data.TensorDataset(train_features, train_labels)
train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True)

def fit_and_plot(lambd):# 定义了一个超参数λ,这个就是L2范数中乘的那个正数
    w, b = init_params()
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for X, y in train_iter:
            # 添加了L2范数惩罚项
            l = loss(net(X, w, b), y) + lambd * l2_penalty(w)
            l = l.sum()
            
            if w.grad is not None:
                w.grad.data.zero_()
                b.grad.data.zero_()
            l.backward()
            d2l.sgd([w, b], lr, batch_size)
        train_ls.append(loss(net(train_features, w, b), train_labels).mean().item())
        test_ls.append(loss(net(test_features, w, b), test_labels).mean().item())
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
                 range(1, num_epochs + 1), test_ls, ['train', 'test'])
    print('L2 norm of w:', w.norm().item())



观察过拟合

fit_and_plot(lambd=0)

在这里插入图片描述



使用权重衰减

fit_and_plot(lambd=3)

在这里插入图片描述



简洁实现

def fit_and_plot_pytorch(wd):
    # 对权重参数衰减。权重名称一般是以weight结尾
    net = nn.Linear(num_inputs, 1)
    # 参数初始化使用init模块来完成
    nn.init.normal_(net.weight, mean=0, std=1)
    nn.init.normal_(net.bias, mean=0, std=1)
    # 优化函数使用的是optim模块里的随机梯度下降函数
    # 这里不需要为L2范数惩罚项单独撰写函数,权重衰减已经封装在SGD函数中了
    # weight_decay=wd表示启用权重衰减
    optimizer_w = torch.optim.SGD(params=[net.weight], lr=lr, weight_decay=wd) # 对权重参数衰减
    optimizer_b = torch.optim.SGD(params=[net.bias], lr=lr)  # 不对偏差参数衰减
    
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for X, y in train_iter:
            l = loss(net(X), y).mean()
            optimizer_w.zero_grad()
            optimizer_b.zero_grad()
            
            l.backward()
            
            # 对两个optimizer实例分别调用step函数,从而分别更新权重和偏差
            optimizer_w.step()
            optimizer_b.step()
        train_ls.append(loss(net(train_features), train_labels).mean().item())
        test_ls.append(loss(net(test_features), test_labels).mean().item())
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
                 range(1, num_epochs + 1), test_ls, ['train', 'test'])
    print('L2 norm of w:', net.weight.data.norm().item())
fit_and_plot_pytorch(0)

在这里插入图片描述

fit_and_plot_pytorch(3)

在这里插入图片描述



丢弃法

在这里插入图片描述



丢弃法从零开始的实现

%matplotlib inline
import torch
import torch.nn as nn
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l

print(torch.__version__)
def dropout(X, drop_prob):
    X = X.float()
    assert 0 <= drop_prob <= 1 # 判断丢弃率是否在0到1之间,如果不在就会报错
    keep_prob = 1 - drop_prob
    # 这种情况下把全部元素都丢弃
    if keep_prob == 0:# keep_prob是保存率,保存率为0说明元素要被全部丢弃,所以返回一个0化的x就可以了
        return torch.zeros_like(X)
    mask = (torch.rand(X.shape) < keep_prob).float()# 随机生成一个x形状的矩阵,内容是随机的。将随机生成的矩阵中的每个位置上的元素和保留率进行比较,如果小于保留率,那么这个位置的元素得以保留,该位置赋值为1,如果大于,该位置元素就要被丢弃,赋值为0。这样就得到mask
    
    return mask * X / keep_prob
X = torch.arange(16).view(2, 8)
dropout(X, 0)# 丢弃率为0,得到的就是原始矩阵x

在这里插入图片描述

dropout(X, 0.5)

在这里插入图片描述

dropout(X, 1.0)

在这里插入图片描述

# 参数的初始化
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256

W1 = torch.tensor(np.random.normal(0, 0.01, size=(num_inputs, num_hiddens1)), dtype=torch.float, requires_grad=True)
b1 = torch.zeros(num_hiddens1, requires_grad=True)
W2 = torch.tensor(np.random.normal(0, 0.01, size=(num_hiddens1, num_hiddens2)), dtype=torch.float, requires_grad=True)
b2 = torch.zeros(num_hiddens2, requires_grad=True)
W3 = torch.tensor(np.random.normal(0, 0.01, size=(num_hiddens2, num_outputs)), dtype=torch.float, requires_grad=True)
b3 = torch.zeros(num_outputs, requires_grad=True)

params = [W1, b1, W2, b2, W3, b3]
drop_prob1, drop_prob2 = 0.2, 0.5# 隐藏层有两层,所以设置两个丢弃率

def net(X, is_training=True):# 输入参数is_training来区分是否在训练
    X = X.view(-1, num_inputs)
    H1 = (torch.matmul(X, W1) + b1).relu()
    if is_training:  # 只在训练模型时使用丢弃法
        H1 = dropout(H1, drop_prob1)  # 在第一层全连接后添加丢弃层
    H2 = (torch.matmul(H1, W2) + b2).relu()
    if is_training:
        H2 = dropout(H2, drop_prob2)  # 在第二层全连接后添加丢弃层
    return torch.matmul(H2, W3) + b3
def evaluate_accuracy(data_iter, net):
    acc_sum, n = 0.0, 0
    for X, y in data_iter:
        if isinstance(net, torch.nn.Module):# 判断网络模型是不是nn.Module
            net.eval() # 是的话使用评估模式, 这会关闭dropout
            acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
            net.train() # 改回训练模式
        else: # 自定义的模型
            if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数
                # 将is_training设置成False
                acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item() 
            else:
                acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() 
        n += y.shape[0]
    return acc_sum / n
num_epochs, lr, batch_size = 5, 100.0, 256  # 这里的学习率设置的很大,原因与之前相同。
loss = torch.nn.CrossEntropyLoss()
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, root='/home/kesci/input/FashionMNIST2065')
d2l.train_ch3(
    net,
    train_iter,
    test_iter,
    loss,
    num_epochs,
    batch_size,
    params,
    lr)



简洁实现

net = nn.Sequential(
        d2l.FlattenLayer(),
        nn.Linear(num_inputs, num_hiddens1),
        nn.ReLU(),
        nn.Dropout(drop_prob1),
        nn.Linear(num_hiddens1, num_hiddens2), 
        nn.ReLU(),
        nn.Dropout(drop_prob2),
        nn.Linear(num_hiddens2, 10)
        )

for param in net.parameters():
    nn.init.normal_(param, mean=0, std=0.01)
    
optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)



版权声明:本文为kkx2218813原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。