python神经网络预测的例子,神经网络算法python实现

  • Post author:
  • Post category:python


python做BP神经网络,进行数据预测,训练的输入和输出值都存在负数,为什么预测值永远为正数?

python 神经网络预测 持续性预测

学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络


AI爱发猫 www.aifamao.com


。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了AndrewTrask写得一篇精彩的博客,我做到了!

下面贴出那九行代码:在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。

如何用9行Python代码编写一个简易神经网络

学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了AndrewTrask写得一篇精彩的博客,我做到了!

下面贴出那九行代码:在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。首先,神经网络是什么?人脑由几千亿由突触相互连接的细胞(神经元)组成。

突触传入足够的兴奋就会引起神经元的兴奋。这个过程被称为“思考”。我们可以在计算机上写一个神经网络来模拟这个过程。不需要在生物分子水平模拟人脑,只需模拟更高层级的规则。

我们使用矩阵(二维数据表格)这一数学工具,并且为了简单明了,只模拟一个有3个输入和一个输出的神经元。我们将训练神经元解决下面的问题。前四个例子被称作训练集。你发现规律了吗?‘?’是0还是1?

你可能发现了,输出总是等于输入中最左列的值。所以‘?’应该是1。训练过程但是如何使我们的神经元回答正确呢?赋予每个输入一个权重,可以是一个正的或负的数字。

拥有较大正(或负)权重的输入将决定神经元的输出。首先设置每个权重的初始值为一个随机数字,然后开始训练过程:取一个训练样本的输入,使用权重调整它们,通过一个特殊的公式计算神经元的输出。

计算误差,即神经元的输出与训练样本中的期待输出之间的差值。根据误差略微地调整权重。重复这个过程1万次。最终权重将会变为符合训练集的一个最优解。

如果使用神经元考虑这种规律的一个新情形,它将会给出一个很棒的预测。这个过程就是backpropagation。计算神经元输出的公式你可能会想,计算神经元输出的公式是什么?

首先,计算神经元输入的加权和,即接着使之规范化,结果在0,1之间。为此使用一个数学函数--Sigmoid函数:Sigmoid函数的图形是一条“S”状的曲线。

把第一个方程代入第二个,计算神经元输出的最终公式为:你可能注意到了,为了简单,我们没有引入最低兴奋阈值。调整权重的公式我们在训练时不断调整权重。但是怎么调整呢?

可以使用“ErrorWeightedDerivative”公式:为什么使用这个公式?首先,我们想使调整和误差的大小成比例。其次,乘以输入(0或1),如果输入是0,权重就不会调整。

最后,乘以Sigmoid曲线的斜率(图4)。

为了理解最后一条,考虑这些:我们使用Sigmoid曲线计算神经元的输出如果输出是一个大的正(或负)数,这意味着神经元采用这种(或另一种)方式从图四可以看出,在较大数值处,Sigmoid曲线斜率小如果神经元认为当前权重是正确的,就不会对它进行很大调整。

乘以Sigmoid曲线斜率便可以实现这一点Sigmoid曲线的斜率可以通过求导得到:把第二个等式代入第一个等式里,得到调整权重的最终公式:当然有其他公式,它们可以使神经元学习得更快,但是这个公式的优点是非常简单。

构造Python代码虽然我们没有使用神经网络库,但是将导入Python数学库numpy里的4个方法。

分别是:exp--自然指数array--创建矩阵dot--进行矩阵乘法random--产生随机数比如,我们可以使用array()方法表示前面展示的训练集:“.T”方法用于矩阵转置(行变列)。

所以,计算机这样存储数字:我觉得我们可以开始构建更优美的源代码了。给出这个源代码后,我会做一个总结。我对每一行源代码都添加了注释来解释所有内容。注意在每次迭代时,我们同时处理所有训练集数据。

所以变量都是矩阵(二维数据表格)。下面是一个用Python写地完整的示例代码。我们做到了!我们用Python构建了一个简单的神经网络!首先神经网络对自己赋予随机权重,然后使用训练集训练自己。

接着,它考虑一种新的情形[1,0,0]并且预测了0.99993704。正确答案是1。非常接近!传统计算机程序通常不会学习。

而神经网络却能自己学习,适应并对新情形做出反应,这是多么神奇,就像人类一样。

如何利用python实现神经网络

官方不支持,建议等支持吧。dll有自己版本对应的,必须使用专门为python3.4编译的dll(),你拿python2.7的肯定用不了。

如果非要使用——方法一:自己编译opencv的源码方法二:安装python2.7。

如何用 Python 构建神经网络择时模型

importmathimportrandom(0)defrand(a,b):#随机函数return(b-a)*random.random()+adefmake_matrix(m,n,fill=0.0):#创建一个指定大小的矩阵mat=[]foriinrange(m):mat.append([fill]*n)returnmat#定义sigmoid函数和它的导数defsigmoid(x):return1.0/((-x))defsigmoid_derivate(x):returnx*(1-x)#sigmoid函数的导数classBPNeuralNetwork:def__init__(self):#初始化变量self.input_n=0self.hidden_n=0self.output_n=0self.input_cells=[]self.hidden_cells=[]self.output_cells=[]self.input_weights=[]self.output_weights=[]self.input_correction=[]self.output_correction=[]#三个列表维护:输入层,隐含层,输出层神经元defsetup(self,ni,nh,no):self.input_n=ni+1#输入层+偏置项self.hidden_n=nh#隐含层self.output_n=no#输出层#初始化神经元self.input_cells=[1.0]*self.input_nself.hidden_cells=[1.0]*self.hidden_nself.output_cells=[1.0]*self.output_n#初始化连接边的边权self.input_weights=make_matrix(self.input_n,self.hidden_n)#邻接矩阵存边权:输入层->隐藏层self.output_weights=make_matrix(self.hidden_n,self.output_n)#邻接矩阵存边权:隐藏层->输出层#随机初始化边权:为了反向传导做准备—>随机初始化的目的是使对称失效foriinrange(self.input_n):forhinrange(self.hidden_n):self.input_weights[i][h]=rand(-0.2,0.2)#由输入层第i个元素到隐藏层第j个元素的边权为随机值forhinrange(self.hidden_n):foroinrange(self.output_n):self.output_weights[h][o]=rand(-2.0,2.0)#由隐藏层第i个元素到输出层第j个元素的边权为随机值#保存校正矩阵,为了以后误差做调整self.input_correction=make_matrix(self.input_n,self.hidden_n)self.output_correction=make_matrix(self.hidden_n,self.output_n)#输出预测值defpredict(self,inputs):#对输入层进行操作转化样本foriinrange(self.input_n-1):self.input_cells[i]=inputs[i]#n个样本从0~n-1#计算隐藏层的输出,每个节点最终的输出值就是权值*节点值的加权和forjinrange(self.hidden_n):total=0.0foriinrange(self.input_n):total+=self.input_cells[i]*self.input_weights[i][j]#此处为何是先i再j,以隐含层节点做大循环,输入样本为小循环,是为了每一个隐藏节点计算一个输出值,传输到下一层self.hidden_cells[j]=sigmoid(total)#此节点的输出是前一层所有输入点和到该点之间的权值加权和forkinrange(self.output_n):total=0.0forjinrange(self.hidden_n):total+=self.hidden_cells[j]*self.output_weights[j][k]self.output_cells[k]=sigmoid(total)#获取输出层每个元素的值returnself.output_cells[:]#最后输出层的结果返回#反向传播算法:调用预测函数,根据反向传播获取权重后前向预测,将结果与实际结果返回比较误差defback_propagate(self,case,label,learn,correct):#对输入样本做预测self.predict(case)#对实例进行预测output_deltas=[0.0]*self.output_n#初始化矩阵foroinrange(self.output_n):error=label[o]-self.output_cells[o]#正确结果和预测结果的误差:0,1,-1output_deltas[o]=sigmoid_derivate(self.output_cells[o])*error#误差稳定在0~1内#隐含层误差hidden_deltas=[0.0]*self.hidden_nforhinrange(self.hidden_n):error=0.0foroinrange(self.output_n):error+=output_deltas[o]*self.output_weights[h][o]hidden_deltas[h]=sigmoid_derivate(self.hidden_cells[h])*error#反向传播算法求W#更新隐藏层->输出权重forhinrange(self.hidden_n):foroinrange(self.output_n):change=output_deltas[o]*self.hidden_cells[h]#调整权重:上一层每个节点的权重学习*变化+矫正率self.output_weights[h][o]+=learn*change+correct*self.output_correction[h][o]#更新输入->隐藏层的权重foriinrange(self.input_n):forhinrange(self.hidden_n):change=hidden_deltas[h]*self.input_cells[i]self.input_weights[i][h]+=learn*change+correct*self.input_correction[i][h]self.input_correction[i][h]=change#获取全局误差error=0.0foroinrange(len(label)):error=0.5*(label[o]-self.output_cells[o])**2#平方误差函数returnerrordeftrain(self,cases,labels,limit=10000,learn=0.05,correct=0.1):foriinrange(limit):#设置迭代次数error=0.0forjinrange(len(cases)):#对输入层进行访问label=labels[j]case=cases[j]error+=self.back_propagate(case,label,learn,correct)#样例,标签,学习率,正确阈值deftest(self):#学习异或cases=[[0,0],[0,1],[1,0],[1,1],]#测试样例labels=[[0],[1],[1],[0]]#标签self.setup(2,5,1)#初始化神经网络:输入层,隐藏层,输出层元素个数self.train(cases,labels,10000,0.05,0.1)#可以更改forcaseincases:print(self.predict(case))if__name__==’__main__’:nn=BPNeuralNetwork()()。



版权声明:本文为shirley67269原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。