1、GC流程
Java 的自动内存管理主要是针对对象内存的回收和对象内存的分配。同时,Java 自动内存管理最核心的功能是 堆 内存中对象的分配与回收。
Java 堆是垃圾收集器管理的主要区域,因此也被称作GC 堆(Garbage Collected Heap).从垃圾回收的角度,由于现在收集器基本都采用分代垃圾收集算法,所以 Java 堆还可以细分为:新生代和老年代:再细致一点有:Eden 空间、From Survivor、To Survivor 空间等。进一步划分的目的是更好地回收内存,或者更快地分配内存。
大部分情况,对象都会首先在 Eden 区域分配,在一次新生代垃圾回收后,如果对象还存活,则会进入 s0 或者 s1,并且对象的年龄还会加 1(Eden 区->Survivor 区后对象的初始年龄变为 1),当它的年龄增加到一定程度(默认为 15 岁),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。
经过这次 GC 后,Eden 区和”From”区已经被清空。这个时候,“From”和”To”会交换他们的角色,也就是新的”To”就是上次 GC 前的“From”,新的”From”就是上次 GC 前的”To”。不管怎样,都会保证名为 To 的 Survivor 区域是空的。Minor GC 会一直重复这样的过程,直到“To”区被填满,”To”区被填满之后,会将所有对象移动到老年代中。
堆内存分配策略:
对象优先在eden区分配,大对象直接进入老年代,长期存活的对象将进入老年代。
既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别哪些对象应放在新生代,哪些对象应放在老年代中。为了做到这一点,虚拟机给每个对象一个对象年龄(Age)计数器。
如果对象在 Eden 出生并经过第一次 Minor GC 后仍然能够存活,并且能被 Survivor 容纳的话,将被移动到 Survivor 空间中,并将对象年龄设为 1.对象在 Survivor 中每熬过一次 MinorGC,年龄就增加 1 岁,当它的年龄增加到一定程度(默认为 15 岁),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。
2、对象死亡
堆中几乎放着所有的对象实例,对堆垃圾回收前的第一步就是要判断哪些对象已经死亡(即不能再被任何途径使用的对象)。
(1)引用计数法
给对象中添加一个引用计数器,每当有一个地方引用它,计数器就加 1;当引用失效,计数器就减 1;任何时候计数器为 0 的对象就是不可能再被使用的。
这个方法实现简单,效率高,但是目前主流的虚拟机中并没有选择这个算法来管理内存,其最主要的原因是它很难解决对象之间相互循环引用的问题。 所谓对象之间的相互引用问题,如下面代码所示:除了对象 objA 和 objB 相互引用着对方之外,这两个对象之间再无任何引用。但是他们因为互相引用对方,导致它们的引用计数器都不为 0,于是引用计数算法无法通知 GC 回收器回收他们。
(2)可达性分析算法
这个算法的基本思想就是通过一系列的称为 “GC Roots” 的对象作为起点,从这些节点开始向下搜索,节点所走过的路径称为引用链,当一个对象到 GC Roots 没有任何引用链相连的话,则证明此对象是不可用的。
可作为 GC Roots 的对象包括下面几种:
虚拟机栈(栈帧中的本地变量表)中引用的对象
本地方法栈(Native 方法)中引用的对象
方法区中类静态属性引用的对象
方法区中常量引用的对象
所有被同步锁持有的对象
(3)引用
无论是通过引用计数法判断对象引用数量,还是通过可达性分析法判断对象的引用链是否可达,判定对象的存活都与“引用”有关。
JDK1.2 之前,Java 中引用的定义很传统:如果 reference 类型的数据存储的数值代表的是另一块内存的起始地址,就称这块内存代表一个引用。
JDK1.2 以后,Java 对引用的概念进行了扩充,将引用分为强引用、软引用、弱引用、虚引用四种(引用强度逐渐减弱)
1.强引用(StrongReference)
以前我们使用的大部分引用实际上都是强引用,这是使用最普遍的引用。如果一个对象具有强引用,那就类似于必不可少的生活用品,垃圾回收器绝不会回收它。当内存空间不足,Java 虚拟机宁愿抛出 OutOfMemoryError 错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足问题。
2.软引用(SoftReference)
如果一个对象只具有软引用,那就类似于可有可无的生活用品。如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存。
软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收,JAVA 虚拟机就会把这个软引用加入到与之关联的引用队列中。
3.弱引用(WeakReference)
如果一个对象只具有弱引用,那就类似于可有可无的生活用品。弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程, 因此不一定会很快发现那些只具有弱引用的对象。
弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java 虚拟机就会把这个弱引用加入到与之关联的引用队列中。
4.虚引用(PhantomReference)
“虚引用”顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收。
虚引用主要用来跟踪对象被垃圾回收的活动。
虚引用与软引用和弱引用的一个区别在于: 虚引用必须和引用队列(ReferenceQueue)联合使用。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之关联的引用队列中。程序可以通过判断引用队列中是否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。程序如果发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。
特别注意,在程序设计中一般很少使用弱引用与虚引用,使用软引用的情况较多,这是因为软引用可以加速 JVM 对垃圾内存的回收速度,可以维护系统的运行安全,防止内存溢出(OutOfMemory)等问题的产生。
(4)不可达的对象并非“非死不可”
即使在可达性分析法中不可达的对象,也并非是“非死不可”的,这时候它们暂时处于“缓刑阶段”,要真正宣告一个对象死亡,至少要经历两次标记过程;可达性分析法中不可达的对象被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行 finalize 方法。当对象没有覆盖 finalize 方法,或 finalize 方法已经被虚拟机调用过时,虚拟机将这两种情况视为没有必要执行。
被判定为需要执行的对象将会被放在一个队列中进行第二次标记,除非这个对象与引用链上的任何一个对象建立关联,否则就会被真的回收。
(5) 如何判断一个常量是废弃常量?
假如在字符串常量池中存在字符串 “abc”,如果当前没有任何 String 对象引用该字符串常量的话,就说明常量 “abc” 就是废弃常量,如果这时发生内存回收的话而且有必要的话,“abc” 就会被系统清理出常量池了。
(6)如何判断一个类是无用的类
判定一个常量是否是“废弃常量”比较简单,而要判定一个类是否是“无用的类”的条件则相对苛刻许多。类需要同时满足下面 3 个条件才能算是 “无用的类” :
该类所有的实例都已经被回收,也就是 Java 堆中不存在该类的任何实例。
加载该类的 ClassLoader 已经被回收。
该类对应的 java.lang.Class 对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。
虚拟机可以对满足上述 3 个条件的无用类进行回收,这里说的仅仅是“可以”,而并不是和对象一样不使用了就会必然被回收。
(7)垃圾收集算法
标记-清除算法
该算法分为“标记”和“清除”阶段:首先标记出所有不需要回收的对象,在标记完成后统一回收掉所有没有被标记的对象。它是最基础的收集算法,后续的算法都是对其不足进行改进得到。这种垃圾收集算法会带来两个明显的问题:
效率问题
空间问题(标记清除后会产生大量不连续的碎片)
标记-复制算法
为了解决效率问题,“标记-复制”收集算法出现了。它可以将内存分为大小相同的两块,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收
标记-整理算法
根据老年代的特点提出的一种标记算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象回收,而是让所有存活的对象向一端移动,然后直接清理掉端边界以外的内存。
分代收集算法
当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将 java 堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。
比如在新生代中,每次收集都会有大量对象死去,所以可以选择”标记-复制“算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择“标记-清除”或“标记-整理”算法进行垃圾收集。
问题:hotspot的算法实现
1、枚举根节点
在可达性分析算法中我们知道根节点是 GC Roots,那么我们首先就要找到这些根节点(常量,类静态属性,栈帧中的变量等)而这些占据了数百兆的空间,要一个一个的检查这些引用,必然费时。
另外,可达性分析算法对执行时间的敏感还体现在 GC 停顿上,我们判断是否可达肯定是检查同一时刻的对象状态,不然的话对象状态可能会发生改变,所以不论是什么样的 GC 收集器,都会有停顿的时间,或长或短,Sun 公司称这种停顿为 stop-the-world。
保守式GC?
不能识别指针和非指针的GC,而保守就保守在:将非指针指向的对象视为活动对象并且不废弃处理。
实际上寄存器,调用栈,全局空间变量。这些都是不明确的根。因为寄存器,调用栈,全局空间变量这三者都能包含指针和非指针,所以GC扫描到他们的时候就不知道里面存的到底是指针还是非指针。比如说调用栈,调用栈里面就有调用帧,调用帧包含局部变量和参数,局部变量就有例如int,double的非指针也有void*这样的指针。
保守式GC识别不明确根时执行3个项目,当3个项目同时成立时则说明是指针。
1、是不是被正确对齐?这是利用CPU的对齐来检查的。若32b的CPU,指针的值的位数
地址的位数
4的倍数,若64b的CPU,指针的值的位数
地址的位数
8的倍数.这个项目,我们必须在语言处理程序中使用指针符合对齐的规则。(对齐这个概念和计算机组成原理内存对齐存放是一样的)
2、是不是指向堆?一般来说,对象分配的地址空间一定是在堆空间,而若指针指向的不是堆就可以判断一定不是指针。
3、调查不明确的根是不是指着对象的开头,具体我们可以使用BIBOP法,把对象按照固定大小对齐,核对检查对象的值是不是对象固定大小的倍数。
非指针和堆里的对象的地址是一样的情况,这时保守式GC就无法识别这个是非指针,而把这个非指针视为指针并且指向的对象一律判为活动对象。
优点:只有简单,简单就意味着不容易出BUG。
缺点:识别指针和非指针需要以上3步,成本有点高。错误识别指针会压迫堆导致没有清除垃圾的效果。不能使用移动式的垃圾回收算法,例如复制算法,因为复制对象的时候会重写指针来指向新的空间,而当错误将非指针识别成指针时重写的就是非指针。
准确式GC?
要实现这样的GC,JVM就要能够判断出所有位置上的数据是不是指向GC堆里的引用,包括活动记录(栈+寄存器)里的数据。
从外部记录下类型信息,存成映射表,HotSpot把这样的数据结构叫做OopMap。在HotSpot中,对象的类型信息里有记录自己的OopMap,记录了在该类型的对象内什么偏移量上是什么类型的数据。所以从对象开始向外的扫描可以是准确的;这些数据是在类加载过程中计算得到的。
遍历所有的 GC Roots 太费时怎么办?在 HotSpot 的实现中,是使用一组称为 OopMap 的数据结构来达到这个目的的,在类加载完成的时候,HotSpot 就把对象内的数据类型计算出来,然后记录下哪些位置是引用。这样 GC 在扫描时就可以直接得到 GC Roots 的信息了。
至于 GC Roots 在枚举对象是否可达的停顿上面,只能不断优化,至今不能消除,stop-the-world 必须发生。
我们使用 OopMap 来记录 GC Roots 从而来完成可达性分析,这是可以的,但是,难道说我们每执行一条指令都要来创建一个 OopMap 吗?(因为执行指令后引用的状态可能发生改变)显然不是。这太浪费时间了,那我们在什么时候才会使用 OopMap 来进行 GC Roots 的枚举呢。
2、安全点
答案就是在安全点才会进行进行 GC,也就是在安全点才会生成 OopMap 记录 GC Roots节点从而判断对象是否可达,进而进行 GC。
安全点的选取肯定是不能大多也不能太少,标准就是可以让程序一直安全的跑下去,不能让太多的死对象占据内存。遇到长时间执行的指令的时候就给它 GC 一下,类如方法的调用、循环跳转、异常跳转等,遇到类似的执行才会生成 Safepoint。
安全点也就是 GC 发生的位置,对于多线程程序来说,我不能一个线程在安全点要进行 GC 的时候其它的线程还在跑,必须要等待,或是说让其它线程也到安全点集合。
两种策略,一是抢占式中断,我先到安全点了,不管你现在在哪里,先给你中断,然后一看,噢原来你不在安全点,就恢复线程让你跑到安全点再 GC。
还有一种是主动式中断,需要 GC 的时候,不需要强制中断线程了,只需要在安全点设置一个轮询标识,线程只需要去轮询这个标识即可,线程到安全点了,自己主动中断,进而 GC。
到这里我们似乎解决了问题,多线程下也可以同时 GC 了,但是有个小小的问题,假如我有一个线程正好在 Sleep,它没有在运行,就不能去轮询 GC 标识了,我们难道要等到它运行再 GC,不可能的对吧!
反过来想一下就是,假如线程本身就不再执行,那何必去管它呢,因为它不可能使引用发生变化啊。故我们又定义了一个安全区域的概念,在这个代码片段之中发生 GC 都是可以的,因为引用不曾改变。这就是扩大版的安全点啊。
在线程执行到安全区域中的代码时,首先标识自己已经进入了安全区域,那样,当这段时间内 JVM 要发起 GC 时,就不管标识自己为安全区域状态的线程了。在线程要离开安全区域时,要检查系统是否已经完成了 GC,如果完成了,那就继续执行,否则就要等待 GC 结束的标识之后才可以离开安全区域。
总结一下,我们要开始 GC,使用可达性分析算法的时候,首先就要找到 GC Roots,然后完成 GC Roots 的遍历,确定要回收的对象,我们在确定 GC Roots 的时候借组与 OopMap 这个数据结构,但是不同的指令下可能会产生不同的 GC Roots,不能为每条指令都创建 OopMap,我们就确定一个安全点,只在安全点去枚举 GC Roots,但是,枚举的时候有些线程可能不再执行,等不到它走到安全点,所以就确定了一个安全区域,只要在这个区域中开始 GC 都是可以的。
(8)垃圾收集器
如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。
虽然我们对各个收集器进行比较,但并非要挑选出一个最好的收集器。因为直到现在为止还没有最好的垃圾收集器出现,更加没有万能的垃圾收集器,我们能做的就是根据具体应用场景选择适合自己的垃圾收集器。试想一下:如果有一种四海之内、任何场景下都适用的完美收集器存在,那么我们的 HotSpot 虚拟机就不会实现那么多不同的垃圾收集器了。
Serial 收集器
Serial(串行)收集器是最基本、历史最悠久的垃圾收集器了。大家看名字就知道这个收集器是一个单线程收集器了。它的 “单线程” 的意义不仅仅意味着它只会使用一条垃圾收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集工作的时候必须暂停其他所有的工作线程( “Stop The World” ),直到它收集结束。
新生代采用标记-复制算法,老年代采用标记-整理算法。
虚拟机的设计者们当然知道 Stop The World 带来的不良用户体验,所以在后续的垃圾收集器设计中停顿时间在不断缩短(仍然还有停顿,寻找最优秀的垃圾收集器的过程仍然在继续)。但是 Serial 收集器有没有优于其他垃圾收集器的地方呢?当然有,它简单而高效(与其他收集器的单线程相比)。Serial 收集器由于没有线程交互的开销,自然可以获得很高的单线程收集效率。Serial 收集器对于运行在 Client 模式下的虚拟机来说是个不错的选择。
ParNew 收集器
ParNew 收集器其实就是 Serial 收集器的多线程版本,除了使用多线程进行垃圾收集外,其余行为(控制参数、收集算法、回收策略等等)和 Serial 收集器完全一样。
新生代采用标记-复制算法,老年代采用标记-整理算法。
它是许多运行在 Server 模式下的虚拟机的首要选择,除了 Serial 收集器外,只有它能与 CMS 收集器(真正意义上的并发收集器,后面会介绍到)配合工作。
并行和并发概念补充:
并行(Parallel) :指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。
并发(Concurrent):指用户线程与垃圾收集线程同时执行(但不一定是并行,可能会交替执行),用户程序在继续运行,而垃圾收集器运行在另一个 CPU 上。
Parallel Scavenge 收集器
Parallel Scavenge 收集器也是使用标记-复制算法的多线程收集器,它看上去几乎和 ParNew 都一样。 那么它有什么特别之处呢?
Parallel Scavenge 收集器关注点是吞吐量(高效率的利用 CPU)。CMS 等垃圾收集器的关注点更多的是用户线程的停顿时间(提高用户体验)。所谓吞吐量就是 CPU 中用于运行用户代码的时间与 CPU 总消耗时间的比值。 Parallel Scavenge 收集器提供了很多参数供用户找到最合适的停顿时间或最大吞吐量,如果对于收集器运作不太了解,手工优化存在困难的时候,使用 Parallel Scavenge 收集器配合自适应调节策略,把内存管理优化交给虚拟机去完成也是一个不错的选择。
新生代采用标记-复制算法,老年代采用标记-整理算法。
JDK1.8 默认使用的是 Parallel Scavenge + Parallel Old,如果指定了-XX:+UseParallelGC 参数,则默认指定了-XX:+UseParallelOldGC,可以使用-XX:-UseParallelOldGC 来禁用该功能
Serial Old 收集器
Serial 收集器的老年代版本,它同样是一个单线程收集器。它主要有两大用途:一种用途是在 JDK1.5 以及以前的版本中与 Parallel Scavenge 收集器搭配使用,另一种用途是作为 CMS 收集器的后备方案。
Parallel Old 收集器
Parallel Scavenge 收集器的老年代版本。使用多线程和“标记-整理”算法。在注重吞吐量以及 CPU 资源的场合,都可以优先考虑 Parallel Scavenge 收集器和 Parallel Old 收集器。
CMS 收集器
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它非常符合在注重用户体验的应用上使用。
CMS(Concurrent Mark Sweep)收集器是 HotSpot 虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。
从名字中的Mark Sweep这两个词可以看出,CMS 收集器是一种 “标记-清除”算法实现的,它的运作过程相比于前面几种垃圾收集器来说更加复杂一些。整个过程分为四个步骤:
初始标记: 暂停所有的其他线程,并记录下直接与 root 相连的对象,速度很快 ;
并发标记: 同时开启 GC 和用户线程,用一个闭包结构去记录可达对象。但在这个阶段结束,这个闭包结构并不能保证包含当前所有的可达对象。因为用户线程可能会不断的更新引用域,所以 GC 线程无法保证可达性分析的实时性。所以这个算法里会跟踪记录这些发生引用更新的地方。
重新标记: 重新标记阶段就是为了修正并发标记期间因为用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段的时间稍长,远远比并发标记阶段时间短
并发清除: 开启用户线程,同时 GC 线程开始对未标记的区域做清扫。
从它的名字就可以看出它是一款优秀的垃圾收集器,主要优点:并发收集、低停顿。但是它有下面三个明显的缺点:
(1)对 CPU 资源敏感;
CMS默认启动在CPU在四个以上,并发回收时垃圾收集线程不少于25%的CPU资源。
(2)无法处理浮动垃圾;
并发清理阶段,用户线程会产生新的垃圾,出现在标记过程之后,此次GC无法处理,被称之为浮动垃圾。
(3)它使用的回收算法-“标记-清除”算法会导致收集结束时会有大量空间碎片产生。
G1 收集器
G1 (Garbage-First) 是一款面向服务器的垃圾收集器,主要针对配备多颗处理器及大容量内存的机器. 以极高概率满足 GC 停顿时间要求的同时,还具备高吞吐量性能特征.
被视为 JDK1.7 中 HotSpot 虚拟机的一个重要进化特征。它具备一下特点:
并行与并发:G1 能充分利用 CPU、多核环境下的硬件优势,使用多个 CPU(CPU 或者 CPU 核心)来缩短 Stop-The-World 停顿时间。部分其他收集器原本需要停顿 Java 线程执行的 GC 动作,G1 收集器仍然可以通过并发的方式让 java 程序继续执行。
分代收集:虽然 G1 可以不需要其他收集器配合就能独立管理整个 GC 堆,但是还是保留了分代的概念。
空间整合:与 CMS 的“标记-清理”算法不同,G1 从整体来看是基于“标记-整理”算法实现的收集器;从局部上来看是基于“标记-复制”算法实现的。
可预测的停顿:这是 G1 相对于 CMS 的另一个大优势,降低停顿时间是 G1 和 CMS 共同的关注点,但 G1 除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为 M 毫秒的时间片段内。
G1 收集器的运作大致分为以下几个步骤:
初始标记
标记一下GC Roots能直接关联的对象,停顿线程,耗时很短
并发标记
从GC Root开始对堆中对象进行可达性分析,找出存活对象,耗时较长,与用户线程并发进行
最终标记
为了修正在并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录。停顿线程,但是可并行执行
筛选回收
首先对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间来制定回收计划,可以并发执行。
G1 收集器在后台维护了一个优先列表,每次根据允许的收集时间,优先选择回收价值最大的 Region(这也就是它的名字 Garbage-First 的由来) 。这种使用 Region 划分内存空间以及有优先级的区域回收方式,保证了 G1 收集器在有限时间内可以尽可能高的收集效率(把内存化整为零)。