线性方程组的矩阵解法——克莱姆法则

  • Post author:
  • Post category:其他


设线性方程组为





{

a

11

x

1

+

a

11

x

2

+

+

a

1

n

x

n

=

b

1

a

21

x

1

+

a

22

x

2

+

+

a

2

n

x

n

=

b

2

.

.

.

.

.

.

a

n

1

x

1

+

a

n

2

x

2

+

+

a

n

n

x

n

=

b

n

\begin{cases} a_{11}x_1+a_{11}x_2+\cdots+a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2\\ ……\\ a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n=b_n\\ \end{cases}






















































































































a











1


1




















x










1




















+





a











1


1




















x










2




















+









+





a











1


n




















x










n




















=





b










1

























a











2


1




















x










1




















+





a











2


2




















x










2




















+









+





a











2


n




















x










n




















=





b










2
























.


.


.


.


.


.









a











n


1




















x










1




















+





a











n


2




















x










2




















+









+





a











n


n




















x










n




















=





b










n











































其系数行列式为





D

=

a

11

a

12

a

1

n

a

21

a

22

a

2

n

a

n

1

a

n

2

a

n

n

0

D=\begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n} \\ a_{21}&a_{22}&\cdots&a_{2n} \\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{vmatrix} \not=0






D




=
























































































































a











1


1


























a











2


1







































a











n


1















































a











1


2


























a











2


2







































a











n


2








































































































a











1


n


























a











2


n







































a











n


n

















































































































































































=








0







则该线性方程组有且仅有唯一解:





x

1

=

D

1

D

,

x

2

=

D

2

D

,


,

x

n

=

D

n

D

x_1=\frac{D_1}{D},x_2=\frac{D_2}{D},\cdots,x_n=\frac{D_n}{D}







x










1




















=



















D















D










1




































,





x










2




















=



















D















D










2




































,











,





x










n




















=



















D















D










n









































其中



D

j

(

j

=

1

,

2

,

,

n

)

D_j(j=1,2,\ldots,n)







D










j


















(


j




=








1


,




2


,









,




n


)





是把系数行列式



D

D






D





中的第



j

j






j





列的元素用常数项



b

1

,

b

2

,

,

b

n

b_1,b_2,\ldots,b_n







b










1


















,





b










2


















,









,





b










n





















代替后得到的



n

n






n





阶行列式,即





D

j

=

a

11

a

1

,

j

1

b

1

a

1

,

j

+

1

a

1

n

a

21

a

2

,

j

1

b

1

a

1

,

j

+

1

a

2

n

a

n

1

a

n

,

j

1

b

1

a

1

,

j

+

1

a

n

n

D_j = \begin{vmatrix} a_{11}&\cdots&a_{1,j-1}&b_1&a_{1,j+1}&\cdots&a_{1n} \\ a_{21}&\cdots&a_{2,j-1}&b_1&a_{1,j+1}&\cdots&a_{2n} \\ \vdots&\vdots&\vdots&\vdots\\ a_{n1}&\cdots&a_{n,j-1}&b_1&a_{1,j+1}&\cdots&a_{nn} \end{vmatrix}







D










j




















=
























































































































a











1


1


























a











2


1







































a











n


1












































































































a











1


,


j





1


























a











2


,


j





1







































a











n


,


j





1















































b










1

























b










1






































b










1














































a











1


,


j


+


1


























a











1


,


j


+


1


























a











1


,


j


+


1































































































a











1


n


























a











2


n


























a











n


n














































































































































举例





{

2

x

1

+

3

x

2

5

x

3

=

3

x

1

2

x

2

+

x

3

=

0

3

x

1

+

x

2

+

3

x

3

=

7

\begin{cases} 2x_1+3x_2-5x_3=3\\ x_1-2x_2+x_3=0\\ 3x_1+x_2+3x_3=7\\ \end{cases}

















































































2



x










1




















+




3



x










2

























5



x










3




















=




3









x










1

























2



x










2




















+





x










3




















=




0








3



x










1




















+





x










2




















+




3



x










3




















=




7

























解:





D

=

2

3

5

1

2

1

3

1

3

=

2

7

7

1

0

0

3

7

0

=

7

7

7

0

=

49

0

D= \begin{vmatrix} 2&3&-5\\ 1 & -2 & 1\\ 3 & 1 &3\\ \end{vmatrix}= \begin{vmatrix} 2 & 7 & -7\\ 1 & 0 & 0\\ 3 & 7 & 0\\ \end{vmatrix}=- \begin{vmatrix} 7&-7\\ 7 &0\\ \end{vmatrix}=-49\not=0






D




=




























































































2








1








3





























3











2








1
































5








1








3































































































=




























































































2








1








3





























7








0








7
































7








0








0































































































=















































































7








7
































7








0













































































=











4


9










































=








0









D

1

=

3

3

5

0

2

1

7

1

3

=

2

7

7

1

0

0

3

7

0

=

3

7

7

7

=

70

D_1= \begin{vmatrix} 3&3&-5\\ 0 & -2 & 1\\ 7 & 1 &3\\ \end{vmatrix}= \begin{vmatrix} 2 & 7 & -7\\ 1 & 0 & 0\\ 3 & 7 & 0\\ \end{vmatrix}=- \begin{vmatrix} 3 & -7\\ 7 & 7\\ \end{vmatrix}=-70







D










1




















=




























































































3








0








7





























3











2








1
































5








1








3































































































=




























































































2








1








3





























7








0








7
































7








0








0































































































=















































































3








7
































7








7













































































=











7


0









x

1

=

D

1

D

=

70

49

=

10

7

x_1=\frac{D_1}{D}=\frac{-70}{-49}=\frac{10}{7}







x










1




















=



















D















D










1






































=






















4


9

















7


0






















=



















7














1


0























其余两个解同理。



版权声明:本文为petSym原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。