理解均摊时间复杂度

  • Post author:
  • Post category:其他


均摊时间复杂度分析,又叫摊还分析(或者叫平摊分析)。均摊时间复杂度,听起来跟平均时间复杂度有点儿像。对于初学者来说,这两个概念确实非常容易弄混。大部分情况下,我们并不需要区分最好、最坏、平均三种复杂度。平均复杂度只在某些特殊情况下才会用到,而均摊时间复杂度应用的场景比它更加特殊、更加有限。我还是借助一个具体的例子来理解。

 // array表示一个长度为n的数组
 // 代码中的array.length就等于n
 int[] array = new int[n];
 int count = 0;
 
 void insert(int val) {
    if (count == array.length) {
       int sum = 0;
       for (int i = 0; i < array.length; ++i) {
          sum = sum + array[i];
       }
       array[0] = sum;
       count = 1;
    }

    array[count] = val;
    ++count;
 }

先来解释一下这段代码。这段代码实现了一个往数组中插入数据的功能。当数组满了之后,也就是代码中的 count == array.length 时,我们用 for 循环遍历数组求和,并清空数组,将求和之后的 sum 值放到数组的第一个位置,然后再将新的数据插入。但如果数组一开始就有空闲空间,则直接将数据插入数组。那这段代码的时间复杂度是多少呢?

最理想的情况下,数组中有空闲空间,只需要将数据插入到数组下标为 count 的位置就可以了,所以最好情况时间复杂度为 O(1)。最坏的情况下,数组中没有空闲空间了,需要先做一次数组的遍历求和,然后再将数据插入,所以最坏情况时间复杂度为 O(n)。那平均时间复杂度是多少呢?答案是 O(1)。我们可以通过概率论的方法来分析。假设数组的长度是 n,根据数据插入的位置的不同,我们可以分为 n 种情况,每种情况的时间复杂度是 O(1)。除此之外,还有一种“

额外

”的情况,就是在数组没有空闲空间时插入一个数据,这个时间复杂度是 O(n)。而且,这 n+1 种情况发生的概率一样,都是 1/(n+1)。所以,根据加权平均的计算方法,求得的平均时间复杂度是:

但是其实并不需要这么复杂。这是为什么呢?对于 insert() 函数来说,O(1) 时间复杂度的插入和 O(n) 时间复杂度的插入,

出现的频率是非常有规律的

,而且有一定的前后时序关系,一般都是一个 O(n) 插入之后,紧跟着 n-1 个 O(1) 的插入操作,循环往复。所以,针对这样一种特殊场景的复杂度分析,并不需要像平均复杂度分析方法那样,找出所有的输入情况及相应的发生概率,然后再计算加权平均值。针对这种特殊的场景,我们引入了一种更加简单的分析方法:摊还分析法,通过摊还分析得到的时间复杂度我们起了一个名字,叫均摊时间复杂度。那究竟如何使用摊还分析法来分析算法的均摊时间复杂度呢?

还是继续看在数组中插入数据的这个例子。每一次 O(n) 的插入操作,都会跟着 n-1 次 O(1) 的插入操作,


所以把耗时多的那次操作均摊到接下来的 n-1 次耗时少的操作上,均摊下来,这一组连续的操作的均摊时间复杂度就是 O(1)



这就是均摊分析的大致思路。

均摊时间复杂度和摊还分析应用场景比较特殊,所以我们并不会经常用到。为了方便你理解、记忆,我这里简单总结一下它们的应用场景。

对一个数据结构进行一组连续操作中,大部分情况下时间复杂度都很低,只有个别情况下时间复杂度比较高,而且这些操作之间存在前后连贯的时序关系,这个时候,我们就可以将这一组操作放在一块儿分析,看是否能将较高时间复杂度那次操作的耗时,平摊到其他那些时间复杂度比较低的操作上

。而且,在能够应用均摊时间复杂度分析的场合,一般均摊时间复杂度就等于最好情况时间复杂度。



版权声明:本文为gaoxueyi551原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。