Redis源码分析(三)—dict哈希结构

  • Post author:
  • Post category:其他


昨天分析完adlist的Redis代码,今天马上马不停蹄的继续学习Redis代码中的哈希部分的结构学习,不过在这里他不叫什么hashMap,而是叫dict,而且是一种全新设计的一种哈希结构,他只是通过几个简单的结构体,再搭配上一些比较常见的哈希算法,就实现了类似高级语言中HashMap的作用了。也让我见识了一些哈希算法的实现,比如dbj hash的算法实现,俗称times33,算法,就是不停的*33,。这种算是一种超级简单的哈希算法。

下面说说给我感觉Redis代码中哈希实现的不是那么简单,中间加了一些东西,比如说dictType定义了一些字典集合操作的公共方法,我把dict叫做字典总类,也可以说字典操作类,真正存放键值对的叫dictEntry,我叫做字典集合,字典集合存放在哈希表中,叫dictht,下面给出一张结构图来理理思路。

下面给出2个文件的代码解析:

dict.h:

<span style=”font-size:14px;”>/* Hash Tables Implementation.

*

* This file implements in-memory hash tables with insert/del/replace/find/

* get-random-element operations. Hash tables will auto-resize if needed

* tables of power of two in size are used, collisions are handled by

* chaining. See the source code for more information… 🙂

*

* Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>

* All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions are met:

*

*   * Redistributions of source code must retain the above copyright notice,

*     this list of conditions and the following disclaimer.

*   * Redistributions in binary form must reproduce the above copyright

*     notice, this list of conditions and the following disclaimer in the

*     documentation and/or other materials provided with the distribution.

*   * Neither the name of Redis nor the names of its contributors may be used

*     to endorse or promote products derived from this software without

*     specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”

* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

* POSSIBILITY OF SUCH DAMAGE.

*/

#include <stdint.h>

#ifndef __DICT_H

#define __DICT_H

/* 定义了成功与错误的值 */

#define DICT_OK 0

#define DICT_ERR 1

/* Unused arguments generate annoying warnings… */

/* dict没有用到时,用来提示警告的 */

#define DICT_NOTUSED(V) ((void) V)

/* 字典结构体,保存K-V值的结构体 */

typedef struct dictEntry {


//字典key函数指针

void *key;

union {


void *val;

//无符号整型值

uint64_t u64;

//有符号整型值

int64_t s64;

double d;

} v;

//下一字典结点

struct dictEntry *next;

} dictEntry;

/* 字典类型 */

typedef struct dictType {


//哈希计算方法,返回整形变量

unsigned int (*hashFunction)(const void *key);

//复制key方法

void *(*keyDup)(void *privdata, const void *key);

//复制val方法

void *(*valDup)(void *privdata, const void *obj);

//key值比较方法

int (*keyCompare)(void *privdata, const void *key1, const void *key2);

//key的析构函数

void (*keyDestructor)(void *privdata, void *key);

//val的析构函数

void (*valDestructor)(void *privdata, void *obj);

} dictType;

/* This is our hash table structure. Every dictionary has two of this as we

* implement incremental rehashing, for the old to the new table. */

/* 哈希表结构体 */

typedef struct dictht {


//字典实体

dictEntry **table;

//表格可容纳字典数量

unsigned long size;

unsigned long sizemask;

//正在被使用的数量

unsigned long used;

} dictht;

/* 字典主操作类 */

typedef struct dict {


//字典类型

dictType *type;

//私有数据指针

void *privdata;

//字典哈希表,共2张,一张旧的,一张新的

dictht ht[2];

//重定位哈希时的下标

long rehashidx; /* rehashing not in progress if rehashidx == -1 */

//当前迭代器数量

int iterators; /* number of iterators currently running */

} dict;

/* If safe is set to 1 this is a safe iterator, that means, you can call

* dictAdd, dictFind, and other functions against the dictionary even while

* iterating. Otherwise it is a non safe iterator, and only dictNext()

* should be called while iterating. */

/* 字典迭代器,如果是安全迭代器,这safe设置为1,可以调用dicAdd,dictFind */

/* 如果是不安全的,则只能调用dicNext方法*/

typedef struct dictIterator {


//当前字典

dict *d;

//下标

long index;

//表格,和安全值的表格代表的是旧的表格,还是新的表格

int table, safe;

//字典实体

dictEntry *entry, *nextEntry;

/* unsafe iterator fingerprint for misuse detection. */

/* 指纹标记,避免不安全的迭代器滥用现象 */

long long fingerprint;

} dictIterator;

/* 字典扫描方法 */

typedef void (dictScanFunction)(void *privdata, const dictEntry *de);

/* This is the initial size of every hash table */

/* 初始化哈希表的数目 */

#define DICT_HT_INITIAL_SIZE     4

/* ——————————- Macros ————————————*/

/* 字典释放val函数时候调用,如果dict中的dictType定义了这个函数指针, */

#define dictFreeVal(d, entry) \

if ((d)->type->valDestructor) \

(d)->type->valDestructor((d)->privdata, (entry)->v.val)

/* 字典val函数复制时候调用,如果dict中的dictType定义了这个函数指针, */

#define dictSetVal(d, entry, _val_) do { \

if ((d)->type->valDup) \

entry->v.val = (d)->type->valDup((d)->privdata, _val_); \

else \

entry->v.val = (_val_); \

} while(0)

/* 设置dictEntry中共用体v中有符号类型的值 */

#define dictSetSignedIntegerVal(entry, _val_) \

do { entry->v.s64 = _val_; } while(0)

/* 设置dictEntry中共用体v中无符号类型的值 */

#define dictSetUnsignedIntegerVal(entry, _val_) \

do { entry->v.u64 = _val_; } while(0)

/* 设置dictEntry中共用体v中double类型的值 */

#define dictSetDoubleVal(entry, _val_) \

do { entry->v.d = _val_; } while(0)

/* 调用dictType定义的key析构函数 */

#define dictFreeKey(d, entry) \

if ((d)->type->keyDestructor) \

(d)->type->keyDestructor((d)->privdata, (entry)->key)

/* 调用dictType定义的key复制函数,没有定义直接赋值 */

#define dictSetKey(d, entry, _key_) do { \

if ((d)->type->keyDup) \

entry->key = (d)->type->keyDup((d)->privdata, _key_); \

else \

entry->key = (_key_); \

} while(0)

/* 调用dictType定义的key比较函数,没有定义直接key值直接比较 */

#define dictCompareKeys(d, key1, key2) \

(((d)->type->keyCompare) ? \

(d)->type->keyCompare((d)->privdata, key1, key2) : \

(key1) == (key2))

#define dictHashKey(d, key) (d)->type->hashFunction(key)   //哈希定位方法

#define dictGetKey(he) ((he)->key)    //获取dictEntry的key值

#define dictGetVal(he) ((he)->v.val)  //获取dicEntry中共用体v中定义的val值

#define dictGetSignedIntegerVal(he) ((he)->v.s64) //获取dicEntry中共用体v中定义的有符号值

#define dictGetUnsignedIntegerVal(he) ((he)->v.u64)  //获取dicEntry中共用体v中定义的无符号值

#define dictGetDoubleVal(he) ((he)->v.d)  //获取dicEntry中共用体v中定义的double类型值

#define dictSlots(d) ((d)->ht[0].size+(d)->ht[1].size)  //获取dict字典中总的表大小

#define dictSize(d) ((d)->ht[0].used+(d)->ht[1].used)   //获取dict字典中总的表的总正在被使用的数量

#define dictIsRehashing(d) ((d)->rehashidx != -1)   //字典有无被重定位过

/* API */

dict *dictCreate(dictType *type, void *privDataPtr);   //创建dict字典总类

int dictExpand(dict *d, unsigned long size);    //字典扩增方法

int dictAdd(dict *d, void *key, void *val);    //字典根据key, val添加一个字典集

dictEntry *dictAddRaw(dict *d, void *key);     //字典添加一个只有key值的dicEntry

int dictReplace(dict *d, void *key, void *val); //替代dict中一个字典集

dictEntry *dictReplaceRaw(dict *d, void *key);  //替代dict中的一个字典,只提供一个key值

int dictDelete(dict *d, const void *key);    //根据key删除一个字典集

int dictDeleteNoFree(dict *d, const void *key);  //字典集删除无、不调用free方法

void dictRelease(dict *d);   //释放整个dict

dictEntry * dictFind(dict *d, const void *key);  //根据key寻找字典集

void *dictFetchValue(dict *d, const void *key);  //根据key值寻找相应的val值

int dictResize(dict *d);  //重新计算大小

dictIterator *dictGetIterator(dict *d); //获取字典迭代器

dictIterator *dictGetSafeIterator(dict *d);  //获取字典安全迭代器

dictEntry *dictNext(dictIterator *iter);   //根据字典迭代器获取字典集的下一字典集

void dictReleaseIterator(dictIterator *iter); //释放迭代器

dictEntry *dictGetRandomKey(dict *d);  //随机获取一个字典集

void dictPrintStats(dict *d);  //打印当前字典状态

unsigned int dictGenHashFunction(const void *key, int len); //输入的key值,目标长度,此方法帮你计算出索引值

unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len); //这里提供了一种比较简单的哈希算法

void dictEmpty(dict *d, void(callback)(void*)); //清空字典

void dictEnableResize(void);  //启用调整方法

void dictDisableResize(void); //禁用调整方法

int dictRehash(dict *d, int n); //hash重定位,主要从旧的表映射到新表中,分n轮定位

int dictRehashMilliseconds(dict *d, int ms);  //在给定时间内,循环执行哈希重定位

void dictSetHashFunctionSeed(unsigned int initval); //设置哈希方法种子

unsigned int dictGetHashFunctionSeed(void);  //获取哈希种子

unsigned long dictScan(dict *d, unsigned long v, dictScanFunction *fn, void *privdata); //字典扫描方法

/* Hash table types */

/* 哈希表类型  */

extern dictType dictTypeHeapStringCopyKey;

extern dictType dictTypeHeapStrings;

extern dictType dictTypeHeapStringCopyKeyValue;

#endif /* __DICT_H */

</span>

dict.c;

<span style=”font-size:14px;”>/* Hash Tables Implementation.

*

* This file implements in memory hash tables with insert/del/replace/find/

* get-random-element operations. Hash tables will auto resize if needed

* tables of power of two in size are used, collisions are handled by

* chaining. See the source code for more information… 🙂

*

* Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>

* All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions are met:

*

*   * Redistributions of source code must retain the above copyright notice,

*     this list of conditions and the following disclaimer.

*   * Redistributions in binary form must reproduce the above copyright

*     notice, this list of conditions and the following disclaimer in the

*     documentation and/or other materials provided with the distribution.

*   * Neither the name of Redis nor the names of its contributors may be used

*     to endorse or promote products derived from this software without

*     specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”

* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

* POSSIBILITY OF SUCH DAMAGE.

*/

#include “fmacros.h”

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <stdarg.h>

#include <limits.h>

#include <sys/time.h>

#include <ctype.h>

#include “dict.h”

#include “zmalloc.h”

#include “redisassert.h”

/* Using dictEnableResize() / dictDisableResize() we make possible to

* enable/disable resizing of the hash table as needed. This is very important

* for Redis, as we use copy-on-write and don’t want to move too much memory

* around when there is a child performing saving operations.

*

* Note that even when dict_can_resize is set to 0, not all resizes are

* prevented: a hash table is still allowed to grow if the ratio between

* the number of elements and the buckets > dict_force_resize_ratio. */

/* redis用了dictEnableResize() / dictDisableResize()方法可以重新调整哈希表的长度,

*因为redis采用的是写时复制的算法,不会挪动太多的内存,只有当调整数量大于一定比例才可能有效 */

static int dict_can_resize = 1;

static unsigned int dict_force_resize_ratio = 5;

/* ————————– private prototypes —————————- */

/* 私有方法 */

static int _dictExpandIfNeeded(dict *ht);    //字典是否需要扩展

static unsigned long _dictNextPower(unsigned long size);

static int _dictKeyIndex(dict *ht, const void *key);

static int _dictInit(dict *ht, dictType *type, void *privDataPtr);  //字典初始化方法

/* ————————– hash functions ——————————– */

/* 哈希索引计算的方法 */

/* Thomas Wang’s 32 bit Mix Function */

/* Thomas Wang’s 32 bit Mix 的哈希算法直接输入key值,获取索引值,据说这种冲突的概率很低 */

unsigned int dictIntHashFunction(unsigned int key)

{


key += ~(key << 15);

key ^=  (key >> 10);

key +=  (key << 3);

key ^=  (key >> 6);

key += ~(key << 11);

key ^=  (key >> 16);

return key;

}

//哈希方法种子,跟产生随机数的种子作用应该是一样的

static uint32_t dict_hash_function_seed = 5381;

/* 重设哈希种子 */

void dictSetHashFunctionSeed(uint32_t seed) {


dict_hash_function_seed = seed;

}

/* 获取哈希种子 */

uint32_t dictGetHashFunctionSeed(void) {


return dict_hash_function_seed;

}

/* MurmurHash2, by Austin Appleby

* Note – This code makes a few assumptions about how your machine behaves –

* 1. We can read a 4-byte value from any address without crashing

* 2. sizeof(int) == 4

*

* And it has a few limitations –

*

* 1. It will not work incrementally.

* 2. It will not produce the same results on little-endian and big-endian

*    machines.

*/

/* 输入的key值,目标长度,此方法帮你计算出索引值,此方法特别表明,

*    不会因为机器之间高低位存储的不同而产生相同的结果 */

unsigned int dictGenHashFunction(const void *key, int len) {


/* ‘m’ and ‘r’ are mixing constants generated offline.

They’re not really ‘magic’, they just happen to work well.  */

//seed种子,m,r的值都将会参与到计算中

uint32_t seed = dict_hash_function_seed;

const uint32_t m = 0x5bd1e995;

const int r = 24;

/* Initialize the hash to a ‘random’ value */

uint32_t h = seed ^ len;

/* Mix 4 bytes at a time into the hash */

const unsigned char *data = (const unsigned char *)key;

while(len >= 4) {


uint32_t k = *(uint32_t*)data;

k *= m;

k ^= k >> r;

k *= m;

h *= m;

h ^= k;

data += 4;

len -= 4;

}

/* Handle the last few bytes of the input array  */

switch(len) {


case 3: h ^= data[2] << 16;

case 2: h ^= data[1] << 8;

case 1: h ^= data[0]; h *= m;

};

/* Do a few final mixes of the hash to ensure the last few

* bytes are well-incorporated. */

h ^= h >> 13;

h *= m;

h ^= h >> 15;

return (unsigned int)h;

}

/* And a case insensitive hash function (based on djb hash) */

/* 这里提供了一种比较简单的哈希算法 */

unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) {


//以djb hash为基础,俗称“times33”就是不断的乘33

//几乎所有的流行的hash map都采用了DJB hash function

unsigned int hash = (unsigned int)dict_hash_function_seed;

while (len–)

hash = ((hash << 5) + hash) + (tolower(*buf++)); /* hash * 33 + c */

return hash;

}

/* —————————– API implementation ————————- */

/* Reset a hash table already initialized with ht_init().

* NOTE: This function should only be called by ht_destroy(). */

/* 重置哈希表方法,只在ht_destroy时使用 */

static void _dictReset(dictht *ht)

{


//清空相应的变量,ht->table的类型其实是dictEntry,叫table名字太有歧义了

ht->table = NULL;

ht->size = 0;

ht->sizemask = 0;

ht->used = 0;

}

/* Create a new hash table */

/* 创建dict操作类 */

dict *dictCreate(dictType *type,

void *privDataPtr)

{


dict *d = zmalloc(sizeof(*d));

//创建好空间之后调用初始化方法

_dictInit(d,type,privDataPtr);

return d;

}

/* Initialize the hash table */

/* 初始化dict类中的type,ht等变量 */

int _dictInit(dict *d, dictType *type,

void *privDataPtr)

{


//重置2个ht哈希表

_dictReset(&d->ht[0]);

_dictReset(&d->ht[1]);

//赋值dictType

d->type = type;

d->privdata = privDataPtr;

//-1代表还没有rehash过,

d->rehashidx = -1;

//当前使用中的迭代器为0

d->iterators = 0;

//返回DICT_OK,代表初始化成功

return DICT_OK;

}

/* Resize the table to the minimal size that contains all the elements,

* but with the invariant of a USED/BUCKETS ratio near to <= 1 */

/* 调整哈希表,用最少的值容纳所有的字典集合 */

int dictResize(dict *d)

{


int minimal;

//如果系统默认调整值不大于0或已经调rehash过的就提示出错,拒绝操作

if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;

//最少数等于哈希标准鸿正在使用的数

minimal = d->ht[0].used;

if (minimal < DICT_HT_INITIAL_SIZE)

minimal = DICT_HT_INITIAL_SIZE;

//调用expand扩容

return dictExpand(d, minimal);

}

/* Expand or create the hash table */

/* 哈希表扩增方法 */

int dictExpand(dict *d, unsigned long size)

{


dictht n; /* the new hash table */

//获取调整值,以2的幂次向上取

unsigned long realsize = _dictNextPower(size);

/* the size is invalid if it is smaller than the number of

* elements already inside the hash table */

//再次判断数量符合不符合

if (dictIsRehashing(d) || d->ht[0].used > size)

return DICT_ERR;

/* Allocate the new hash table and initialize all pointers to NULL */

//初始化大小

n.size = realsize;

n.sizemask = realsize-1;

//为表格申请realsize个字典集的大小

n.table = zcalloc(realsize*sizeof(dictEntry*));

n.used = 0;

/* Is this the first initialization? If so it’s not really a rehashing

* we just set the first hash table so that it can accept keys. */

if (d->ht[0].table == NULL) {


d->ht[0] = n;

return DICT_OK;

}

/* Prepare a second hash table for incremental rehashing */

//赋值给第二张表格

d->ht[1] = n;

d->rehashidx = 0;

return DICT_OK;

}

/* Performs N steps of incremental rehashing. Returns 1 if there are still

* keys to move from the old to the new hash table, otherwise 0 is returned.

* Note that a rehashing step consists in moving a bucket (that may have more

* than one key as we use chaining) from the old to the new hash table. */

/* hash重定位,主要从旧的表映射到新表中

* 如果返回1说明旧的表中还存在key迁移到新表中,0代表没有 */

int dictRehash(dict *d, int n) {


if (!dictIsRehashing(d)) return 0;

/* 根据参数分n步多次循环操作 */

while(n–) {


dictEntry *de, *nextde;

/* Check if we already rehashed the whole table… */

if (d->ht[0].used == 0) {


zfree(d->ht[0].table);

d->ht[0] = d->ht[1];

_dictReset(&d->ht[1]);

d->rehashidx = -1;

return 0;

}

/* Note that rehashidx can’t overflow as we are sure there are more

* elements because ht[0].used != 0 */

assert(d->ht[0].size > (unsigned long)d->rehashidx);

while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;

de = d->ht[0].table[d->rehashidx];

/* Move all the keys in this bucket from the old to the new hash HT */

/* 移动的关键操作 */

while(de) {


unsigned int h;

nextde = de->next;

/* Get the index in the new hash table */

h = dictHashKey(d, de->key) & d->ht[1].sizemask;

de->next = d->ht[1].table[h];

d->ht[1].table[h] = de;

d->ht[0].used–;

d->ht[1].used++;

de = nextde;

}

d->ht[0].table[d->rehashidx] = NULL;

d->rehashidx++;

}

return 1;

}

/* 获取当前毫秒的时间 */

long long timeInMilliseconds(void) {


struct timeval tv;

gettimeofday(&tv,NULL);

return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);

}

/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */

/* 在给定时间内,循环执行哈希重定位 */

int dictRehashMilliseconds(dict *d, int ms) {


long long start = timeInMilliseconds();

int rehashes = 0;

while(dictRehash(d,100)) {


//重定位的次数累加

rehashes += 100;

//时间超出给定时间范围,则终止

if (timeInMilliseconds()-start > ms) break;

}

return rehashes;

}

/* This function performs just a step of rehashing, and only if there are

* no safe iterators bound to our hash table. When we have iterators in the

* middle of a rehashing we can’t mess with the two hash tables otherwise

* some element can be missed or duplicated.

*

* This function is called by common lookup or update operations in the

* dictionary so that the hash table automatically migrates from H1 to H2

* while it is actively used. */

/* 当没有迭代器时候,进行重定位算法 */

static void _dictRehashStep(dict *d) {


if (d->iterators == 0) dictRehash(d,1);

}

/* Add an element to the target hash table */

/* 添加一个dicEntry */

int dictAdd(dict *d, void *key, void *val)

{


dictEntry *entry = dictAddRaw(d,key);

if (!entry) return DICT_ERR;

dictSetVal(d, entry, val);

return DICT_OK;

}

/* Low level add. This function adds the entry but instead of setting

* a value returns the dictEntry structure to the user, that will make

* sure to fill the value field as he wishes.

*

* This function is also directly exposed to user API to be called

* mainly in order to store non-pointers inside the hash value, example:

*

* entry = dictAddRaw(dict,mykey);

* if (entry != NULL) dictSetSignedIntegerVal(entry,1000);

*

* Return values:

*

* If key already exists NULL is returned.

* If key was added, the hash entry is returned to be manipulated by the caller.

*/

/* 添加一个指定key值的Entry */

dictEntry *dictAddRaw(dict *d, void *key)

{


int index;

dictEntry *entry;

dictht *ht;

if (dictIsRehashing(d)) _dictRehashStep(d);

/* Get the index of the new element, or -1 if

* the element already exists. */

/* 如果指定的key已经存在,则直接返回NULL说明添加失败 */

if ((index = _dictKeyIndex(d, key)) == -1)

return NULL;

/* Allocate the memory and store the new entry */

ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];

entry = zmalloc(sizeof(*entry));

entry->next = ht->table[index];

ht->table[index] = entry;

ht->used++;

/* Set the hash entry fields. */

dictSetKey(d, entry, key);

return entry;

}

/* Add an element, discarding the old if the key already exists.

* Return 1 if the key was added from scratch, 0 if there was already an

* element with such key and dictReplace() just performed a value update

* operation. */

/* 替换一个子字典集,如果不存在直接添加,存在,覆盖val的值 */

int dictReplace(dict *d, void *key, void *val)

{


dictEntry *entry, auxentry;

/* Try to add the element. If the key

* does not exists dictAdd will suceed. */

//不存在,这个key直接添加

if (dictAdd(d, key, val) == DICT_OK)

return 1;

/* It already exists, get the entry */

entry = dictFind(d, key);

/* Set the new value and free the old one. Note that it is important

* to do that in this order, as the value may just be exactly the same

* as the previous one. In this context, think to reference counting,

* you want to increment (set), and then decrement (free), and not the

* reverse. */

//赋值方法

auxentry = *entry;

dictSetVal(d, entry, val);

dictFreeVal(d, &auxentry);

return 0;

}

/* dictReplaceRaw() is simply a version of dictAddRaw() that always

* returns the hash entry of the specified key, even if the key already

* exists and can’t be added (in that case the entry of the already

* existing key is returned.)

*

* See dictAddRaw() for more information. */

/* 添加字典,没有函数方法,如果存在,就不添加 */

dictEntry *dictReplaceRaw(dict *d, void *key) {


dictEntry *entry = dictFind(d,key);

return entry ? entry : dictAddRaw(d,key);

}

/* Search and remove an element */

/* 删除给定key的结点,可控制是否调用释放方法 */

static int dictGenericDelete(dict *d, const void *key, int nofree)

{


unsigned int h, idx;

dictEntry *he, *prevHe;

int table;

if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */

if (dictIsRehashing(d)) _dictRehashStep(d);

//计算key对应的哈希索引

h = dictHashKey(d, key);

for (table = 0; table <= 1; table++) {


idx = h & d->ht[table].sizemask;

//找到具体的索引对应的结点

he = d->ht[table].table[idx];

prevHe = NULL;

while(he) {


if (dictCompareKeys(d, key, he->key)) {


/* Unlink the element from the list */

if (prevHe)

prevHe->next = he->next;

else

d->ht[table].table[idx] = he->next;

if (!nofree) {


//判断是否需要调用dict定义的free方法

dictFreeKey(d, he);

dictFreeVal(d, he);

}

zfree(he);

d->ht[table].used–;

return DICT_OK;

}

prevHe = he;

he = he->next;

}

if (!dictIsRehashing(d)) break;

}

return DICT_ERR; /* not found */

}

/* 会调用free方法的删除方法 */

int dictDelete(dict *ht, const void *key) {


return dictGenericDelete(ht,key,0);

}

/* 不会调用free方法的删除方法 */

int dictDeleteNoFree(dict *ht, const void *key) {


return dictGenericDelete(ht,key,1);

}

/* Destroy an entire dictionary */

/* 清空整个哈希表 */

int _dictClear(dict *d, dictht *ht, void(callback)(void *)) {


unsigned long i;

/* Free all the elements */

for (i = 0; i < ht->size && ht->used > 0; i++) {


dictEntry *he, *nextHe;

//每次情况会调用回调方法

if (callback && (i & 65535) == 0) callback(d->privdata);

if ((he = ht->table[i]) == NULL) continue;

while(he) {


//依次释放结点

nextHe = he->next;

dictFreeKey(d, he);

dictFreeVal(d, he);

zfree(he);

ht->used–;

he = nextHe;

}

}

/* Free the table and the allocated cache structure */

zfree(ht->table);

/* Re-initialize the table */

_dictReset(ht);

return DICT_OK; /* never fails */

}

/* Clear & Release the hash table */

/* 重置字典总类,清空2张表 */

void dictRelease(dict *d)

{


_dictClear(d,&d->ht[0],NULL);

_dictClear(d,&d->ht[1],NULL);

zfree(d);

}

/* 根据key返回具体的字典集 */

dictEntry *dictFind(dict *d, const void *key)

{


dictEntry *he;

unsigned int h, idx, table;

if (d->ht[0].size == 0) return NULL; /* We don’t have a table at all */

if (dictIsRehashing(d)) _dictRehashStep(d);

h = dictHashKey(d, key);

for (table = 0; table <= 1; table++) {


idx = h & d->ht[table].sizemask;

he = d->ht[table].table[idx];

while(he) {


if (dictCompareKeys(d, key, he->key))

return he;

he = he->next;

}

if (!dictIsRehashing(d)) return NULL;

}

return NULL;

}

/* 获取目标字典集的方法 */

void *dictFetchValue(dict *d, const void *key) {


dictEntry *he;

he = dictFind(d,key);

/* 获取字典集的方法 */

return he ? dictGetVal(he) : NULL;

}

/* A fingerprint is a 64 bit number that represents the state of the dictionary

* at a given time, it’s just a few dict properties xored together.

* When an unsafe iterator is initialized, we get the dict fingerprint, and check

* the fingerprint again when the iterator is released.

* If the two fingerprints are different it means that the user of the iterator

* performed forbidden operations against the dictionary while iterating. */

/* 通过指纹来禁止每个不安全的哈希迭代器的非法操作,每个不安全迭代器只能有一个指纹 */

long long dictFingerprint(dict *d) {


long long integers[6], hash = 0;

int j;

integers[0] = (long) d->ht[0].table;

integers[1] = d->ht[0].size;

integers[2] = d->ht[0].used;

integers[3] = (long) d->ht[1].table;

integers[4] = d->ht[1].size;

integers[5] = d->ht[1].used;

/* We hash N integers by summing every successive integer with the integer

* hashing of the previous sum. Basically:

*

* Result = hash(hash(hash(int1)+int2)+int3) …

*

* This way the same set of integers in a different order will (likely) hash

* to a different number. */

for (j = 0; j < 6; j++) {


hash += integers[j];

/* For the hashing step we use Tomas Wang’s 64 bit integer hash. */

hash = (~hash) + (hash << 21); // hash = (hash << 21) – hash – 1;

hash = hash ^ (hash >> 24);

hash = (hash + (hash << 3)) + (hash << 8); // hash * 265

hash = hash ^ (hash >> 14);

hash = (hash + (hash << 2)) + (hash << 4); // hash * 21

hash = hash ^ (hash >> 28);

hash = hash + (hash << 31);

}

return hash;

}

/* 获取哈希迭代器,默认不安全的 */

dictIterator *dictGetIterator(dict *d)

{


dictIterator *iter = zmalloc(sizeof(*iter));

iter->d = d;

iter->table = 0;

iter->index = -1;

iter->safe = 0;

iter->entry = NULL;

iter->nextEntry = NULL;

return iter;

}

/* 获取安全哈希迭代器 */

dictIterator *dictGetSafeIterator(dict *d) {


dictIterator *i = dictGetIterator(d);

i->safe = 1;

return i;

}

/* 迭代器获取下一个集合点 */

dictEntry *dictNext(dictIterator *iter)

{


while (1) {


if (iter->entry == NULL) {


dictht *ht = &iter->d->ht[iter->table];

if (iter->index == -1 && iter->table == 0) {


//如果迭代器index下标为-1说明还没开始使用,设置迭代器的指纹或增加引用计数量

if (iter->safe)

iter->d->iterators++;

else

iter->fingerprint = dictFingerprint(iter->d);

}

//迭代器下标递增

iter->index++;

if (iter->index >= (long) ht->size) {


if (dictIsRehashing(iter->d) && iter->table == 0) {


iter->table++;

iter->index = 0;

ht = &iter->d->ht[1];

} else {


break;

}

}

//根据下标选择集合点

iter->entry = ht->table[iter->index];

} else {


iter->entry = iter->nextEntry;

}

if (iter->entry) {


/* We need to save the ‘next’ here, the iterator user

* may delete the entry we are returning. */

iter->nextEntry = iter->entry->next;

return iter->entry;

}

}

return NULL;

}

/* 释放迭代器 */

void dictReleaseIterator(dictIterator *iter)

{


if (!(iter->index == -1 && iter->table == 0)) {


if (iter->safe)

iter->d->iterators–;

else

//这时判断指纹是否还是之前定义的那个

assert(iter->fingerprint == dictFingerprint(iter->d));

}

zfree(iter);

}

/* Return a random entry from the hash table. Useful to

* implement randomized algorithms */

/* 随机获取一个集合点 */

dictEntry *dictGetRandomKey(dict *d)

{


dictEntry *he, *orighe;

unsigned int h;

int listlen, listele;

if (dictSize(d) == 0) return NULL;

if (dictIsRehashing(d)) _dictRehashStep(d);

if (dictIsRehashing(d)) {


do {


//随机数向2个表格的总数求余运算

h = random() % (d->ht[0].size+d->ht[1].size);

he = (h >= d->ht[0].size) ? d->ht[1].table[h – d->ht[0].size] :

d->ht[0].table[h];

} while(he == NULL);

} else {


do {


h = random() & d->ht[0].sizemask;

he = d->ht[0].table[h];

} while(he == NULL);

}

/* Now we found a non empty bucket, but it is a linked

* list and we need to get a random element from the list.

* The only sane way to do so is counting the elements and

* select a random index. */

listlen = 0;

orighe = he;

while(he) {


he = he->next;

listlen++;

}

listele = random() % listlen;

he = orighe;

while(listele–) he = he->next;

return he;

}

/* Function to reverse bits. Algorithm from:

* http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel */

/* 很神奇的翻转位 */

static unsigned long rev(unsigned long v) {


unsigned long s = 8 * sizeof(v); // bit size; must be power of 2

unsigned long mask = ~0;

while ((s >>= 1) > 0) {


mask ^= (mask << s);

v = ((v >> s) & mask) | ((v << s) & ~mask);

}

return v;

}

/* dictScan() is used to iterate over the elements of a dictionary.

*

* Iterating works in the following way:

*

* 1) Initially you call the function using a cursor (v) value of 0.

* 2) The function performs one step of the iteration, and returns the

*    new cursor value that you must use in the next call.

* 3) When the returned cursor is 0, the iteration is complete.

*

* The function guarantees that all the elements that are present in the

* dictionary from the start to the end of the iteration are returned.

* However it is possible that some element is returned multiple time.

*

* For every element returned, the callback ‘fn’ passed as argument is

* called, with ‘privdata’ as first argument and the dictionar entry

* ‘de’ as second argument.

*

* HOW IT WORKS.

*

* The algorithm used in the iteration was designed by Pieter Noordhuis.

* The main idea is to increment a cursor starting from the higher order

* bits, that is, instead of incrementing the cursor normally, the bits

* of the cursor are reversed, then the cursor is incremented, and finally

* the bits are reversed again.

*

* This strategy is needed because the hash table may be resized from one

* call to the other call of the same iteration.

*

* dict.c hash tables are always power of two in size, and they

* use chaining, so the position of an element in a given table is given

* always by computing the bitwise AND between Hash(key) and SIZE-1

* (where SIZE-1 is always the mask that is equivalent to taking the rest

*  of the division between the Hash of the key and SIZE).

*

* For example if the current hash table size is 16, the mask is

* (in binary) 1111. The position of a key in the hash table will be always

* the last four bits of the hash output, and so forth.

*

* WHAT HAPPENS IF THE TABLE CHANGES IN SIZE?

*

* If the hash table grows, elements can go anyway in one multiple of

* the old bucket: for example let’s say that we already iterated with

* a 4 bit cursor 1100, since the mask is 1111 (hash table size = 16).

*

* If the hash table will be resized to 64 elements, and the new mask will

* be 111111, the new buckets that you obtain substituting in ??1100

* either 0 or 1, can be targeted only by keys that we already visited

* when scanning the bucket 1100 in the smaller hash table.

*

* By iterating the higher bits first, because of the inverted counter, the

* cursor does not need to restart if the table size gets bigger, and will

* just continue iterating with cursors that don’t have ‘1100’ at the end,

* nor any other combination of final 4 bits already explored.

*

* Similarly when the table size shrinks over time, for example going from

* 16 to 8, If a combination of the lower three bits (the mask for size 8

* is 111) was already completely explored, it will not be visited again

* as we are sure that, we tried for example, both 0111 and 1111 (all the

* variations of the higher bit) so we don’t need to test it again.

*

* WAIT… YOU HAVE *TWO* TABLES DURING REHASHING!

*

* Yes, this is true, but we always iterate the smaller one of the tables,

* testing also all the expansions of the current cursor into the larger

* table. So for example if the current cursor is 101 and we also have a

* larger table of size 16, we also test (0)101 and (1)101 inside the larger

* table. This reduces the problem back to having only one table, where

* the larger one, if exists, is just an expansion of the smaller one.

*

* LIMITATIONS

*

* This iterator is completely stateless, and this is a huge advantage,

* including no additional memory used.

*

* The disadvantages resulting from this design are:

*

* 1) It is possible that we return duplicated elements. However this is usually

*    easy to deal with in the application level.

* 2) The iterator must return multiple elements per call, as it needs to always

*    return all the keys chained in a given bucket, and all the expansions, so

*    we are sure we don’t miss keys moving.

* 3) The reverse cursor is somewhat hard to understand at first, but this

*    comment is supposed to help.

*/

/* 扫描方法 */

unsigned long dictScan(dict *d,

unsigned long v,

dictScanFunction *fn,

void *privdata)

{


dictht *t0, *t1;

const dictEntry *de;

unsigned long m0, m1;

if (dictSize(d) == 0) return 0;

if (!dictIsRehashing(d)) {


t0 = &(d->ht[0]);

m0 = t0->sizemask;

/* Emit entries at cursor */

de = t0->table[v & m0];

while (de) {


fn(privdata, de);

de = de->next;

}

} else {


t0 = &d->ht[0];

t1 = &d->ht[1];

/* Make sure t0 is the smaller and t1 is the bigger table */

if (t0->size > t1->size) {


t0 = &d->ht[1];

t1 = &d->ht[0];

}

m0 = t0->sizemask;

m1 = t1->sizemask;

/* Emit entries at cursor */

de = t0->table[v & m0];

while (de) {


fn(privdata, de);

de = de->next;

}

/* Iterate over indices in larger table that are the expansion

* of the index pointed to by the cursor in the smaller table */

do {


/* Emit entries at cursor */

de = t1->table[v & m1];

while (de) {


fn(privdata, de);

de = de->next;

}

/* Increment bits not covered by the smaller mask */

v = (((v | m0) + 1) & ~m0) | (v & m0);

/* Continue while bits covered by mask difference is non-zero */

} while (v & (m0 ^ m1));

}

/* Set unmasked bits so incrementing the reversed cursor

* operates on the masked bits of the smaller table */

v |= ~m0;

/* Increment the reverse cursor */

v = rev(v);

v++;

v = rev(v);

return v;

}

/* ————————- private functions —————————— */

/* Expand the hash table if needed */

/* 判断是否需要扩容 */

static int _dictExpandIfNeeded(dict *d)

{


/* Incremental rehashing already in progress. Return. */

if (dictIsRehashing(d)) return DICT_OK;

/* If the hash table is empty expand it to the initial size. */

if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);

/* If we reached the 1:1 ratio, and we are allowed to resize the hash

* table (global setting) or we should avoid it but the ratio between

* elements/buckets is over the “safe” threshold, we resize doubling

* the number of buckets. */

/* 判断是否需要扩容 */

if (d->ht[0].used >= d->ht[0].size &&

(dict_can_resize ||

d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))

{


return dictExpand(d, d->ht[0].used*2);

}

return DICT_OK;

}

/* Our hash table capability is a power of two */

/* 哈希表的容量以2的幂次方,所以数量以2的幂次向上取 */

static unsigned long _dictNextPower(unsigned long size)

{


unsigned long i = DICT_HT_INITIAL_SIZE;

if (size >= LONG_MAX) return LONG_MAX;

while(1) {


if (i >= size)

return i;

i *= 2;

}

}

/* Returns the index of a free slot that can be populated with

* a hash entry for the given ‘key’.

* If the key already exists, -1 is returned.

*

* Note that if we are in the process of rehashing the hash table, the

* index is always returned in the context of the second (new) hash table. */

/* 获取key值对应的哈希索引值,如果已经存在此key则返回-1 */

static int _dictKeyIndex(dict *d, const void *key)

{


unsigned int h, idx, table;

dictEntry *he;

/* Expand the hash table if needed */

if (_dictExpandIfNeeded(d) == DICT_ERR)

return -1;

/* Compute the key hash value */

h = dictHashKey(d, key);

for (table = 0; table <= 1; table++) {


idx = h & d->ht[table].sizemask;

/* Search if this slot does not already contain the given key */

he = d->ht[table].table[idx];

while(he) {


if (dictCompareKeys(d, key, he->key))

return -1;

he = he->next;

}

if (!dictIsRehashing(d)) break;

}

return idx;

}

/* 清空整个字典,即清空里面的2张哈希表 */

void dictEmpty(dict *d, void(callback)(void*)) {


_dictClear(d,&d->ht[0],callback);

_dictClear(d,&d->ht[1],callback);

d->rehashidx = -1;

d->iterators = 0;

}

/*启用哈希表调整*/

void dictEnableResize(void) {


dict_can_resize = 1;

}

/* 启用哈希表调整 */

void dictDisableResize(void) {


dict_can_resize = 0;

}

#if 0

/* The following is code that we don’t use for Redis currently, but that is part

of the library. */

/* redis中还存着调试的代码 */

/* ———————– Debugging ————————*/

#define DICT_STATS_VECTLEN 50

static void _dictPrintStatsHt(dictht *ht) {


unsigned long i, slots = 0, chainlen, maxchainlen = 0;

unsigned long totchainlen = 0;

unsigned long clvector[DICT_STATS_VECTLEN];

if (ht->used == 0) {


printf(“No stats available for empty dictionaries\n”);

return;

}

for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;

for (i = 0; i < ht->size; i++) {


dictEntry *he;

if (ht->table[i] == NULL) {


clvector[0]++;

continue;

}

slots++;

/* For each hash entry on this slot… */

chainlen = 0;

he = ht->table[i];

while(he) {


chainlen++;

he = he->next;

}

clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;

if (chainlen > maxchainlen) maxchainlen = chainlen;

totchainlen += chainlen;

}

printf(“Hash table stats:\n”);

printf(” table size: %ld\n”, ht->size);

printf(” number of elements: %ld\n”, ht->used);

printf(” different slots: %ld\n”, slots);

printf(” max chain length: %ld\n”, maxchainlen);

printf(” avg chain length (counted): %.02f\n”, (float)totchainlen/slots);

printf(” avg chain length (computed): %.02f\n”, (float)ht->used/slots);

printf(” Chain length distribution:\n”);

for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {


if (clvector[i] == 0) continue;

printf(”   %s%ld: %ld (%.02f%%)\n”,(i == DICT_STATS_VECTLEN-1)?”>= “:””, i, clvector[i], ((float)clvector[i]/ht->size)*100);

}

}

void dictPrintStats(dict *d) {


_dictPrintStatsHt(&d->ht[0]);

if (dictIsRehashing(d)) {


printf(“– Rehashing into ht[1]:\n”);

_dictPrintStatsHt(&d->ht[1]);

}

}

/* ———————– StringCopy Hash Table Type ————————*/

static unsigned int _dictStringCopyHTHashFunction(const void *key)

{


return dictGenHashFunction(key, strlen(key));

}

static void *_dictStringDup(void *privdata, const void *key)

{


int len = strlen(key);

char *copy = zmalloc(len+1);

DICT_NOTUSED(privdata);

memcpy(copy, key, len);

copy[len] = ‘\0’;

return copy;

}

static int _dictStringCopyHTKeyCompare(void *privdata, const void *key1,

const void *key2)

{


DICT_NOTUSED(privdata);

return strcmp(key1, key2) == 0;

}

static void _dictStringDestructor(void *privdata, void *key)

{


DICT_NOTUSED(privdata);

zfree(key);

}

/* 定义了3种类型的dictType,有些类型无val dup方法的定义 */

dictType dictTypeHeapStringCopyKey = {


_dictStringCopyHTHashFunction, /* hash function */

_dictStringDup,                /* key dup */

NULL,                          /* val dup */

_dictStringCopyHTKeyCompare,   /* key compare */

_dictStringDestructor,         /* key destructor */

NULL                           /* val destructor */

};

/* This is like StringCopy but does not auto-duplicate the key.

* It’s used for intepreter’s shared strings. */

dictType dictTypeHeapStrings = {


_dictStringCopyHTHashFunction, /* hash function */

NULL,                          /* key dup */

NULL,                          /* val dup */

_dictStringCopyHTKeyCompare,   /* key compare */

_dictStringDestructor,         /* key destructor */

NULL                           /* val destructor */

};

/* This is like StringCopy but also automatically handle dynamic

* allocated C strings as values. */

dictType dictTypeHeapStringCopyKeyValue = {


_dictStringCopyHTHashFunction, /* hash function */

_dictStringDup,                /* key dup */

_dictStringDup,                /* val dup */

_dictStringCopyHTKeyCompare,   /* key compare */

_dictStringDestructor,         /* key destructor */

_dictStringDestructor,         /* val destructor */

};

#endif

</span>

哈希算法的索引计算其实我还是有点不理解的地方的,比如他的索引计算,会从一张旧表映射到一个新表,作者出于什么目的,也许以后再看的时候才会明白吧。

———————

作者:Android路上的人

来源:CSDN

原文:https://blog.csdn.net/Androidlushangderen/article/details/39860693

版权声明:本文为博主原创文章,转载请附上博文链接!