随机过程(2.1)—— 多维随机变量(随机向量)

  • Post author:
  • Post category:其他

  • 随机过程本质就是一组与时间相关的随机变量,描述系统在 一系列时刻所处的状态。因此,我们首先补充关于多维随机变量(随机向量)的内容
  • 注:本文中加粗大写字母代表矩阵(如

    A

    ,

    B

    ,

    L

    \pmb{A,B,L}

    A,B,LA,B,LA,B,L) 或随机向量(如

    X

    ,

    Y

    \pmb{X,Y}

    X,YX,YX,Y);加粗小写字母代表数的向量(如

    a

    ,

    b

    \pmb{a,b}

    a,ba,ba,b);普通大写字母代表一个随机变量(如

    X

    ,

    Y

    X,Y

    X,Y


1. 多维 r.v. 的期望和方差

  • 记多维 r.v.s. 为

    X

    =

    [

    X

    1

    X

    2

    X

    n

    ]

    ,

    Y

    =

    [

    Y

    1

    Y

    2

    Y

    n

    ]

    \pmb{X} = \begin{bmatrix}X_1\\X_2\\\vdots \\X_n \end{bmatrix}, \pmb{Y} = \begin{bmatrix}Y_1\\Y_2\\\vdots \\Y_n \end{bmatrix}

    XXX=X1X2Xn,YYY=Y1Y2Yn

    1. 期望

      E

      X

      =

      [

      E

      X

      1

      E

      X

      2

      E

      X

      n

      ]

      E\pmb{X} = \begin{bmatrix}EX_1\\EX_2\\\vdots \\EX_n \end{bmatrix}

      EXXX=EX1EX2EXn

    2. 方差(矩阵)

      Var

      (

      X

      )

      =

      (

      Cov

      (

      X

      i

      ,

      X

      j

      )

      )

      n

      ×

      n

      =

      (

      E

      [

      (

      X

      i

      E

      X

      i

      )

      (

      X

      j

      E

      X

      j

      )

      ]

      )

      n

      ×

      n

      =

      E

      [

      (

      X

      E

      X

      )

      (

      X

      E

      X

      )

      ]

      \begin{aligned} \text{Var}(\pmb{X}) &= \big(\text{Cov}(X_i,X_j)\big)_{n\times n} \\ &=\big(E\big[(X_i-EX_i)(X_j-EX_j)\big]\big)_{n\times n} \\ &= E\big[(\pmb{X}-E\pmb{X})(\pmb{X}-E\pmb{X})^\top \big]\end{aligned}

      Var(XXX)=(Cov(Xi,Xj))n×n=(E[(XiEXi)(XjEXj)])n×n=E[(XXXEXXX)(XXXEXXX)]

    3. 协方差(矩阵)

      Cov

      (

      X

      ,

      Y

      )

      =

      (

      Cov

      (

      X

      i

      ,

      Y

      j

      )

      )

      n

      ×

      n

      =

      (

      E

      [

      (

      X

      i

      E

      X

      i

      )

      (

      Y

      j

      E

      Y

      j

      )

      ]

      )

      n

      ×

      n

      =

      E

      [

      (

      X

      E

      X

      )

      (

      Y

      E

      Y

      )

      ]

      \begin{aligned} \text{Cov}(\pmb{X},\pmb{Y}) &= (\text{Cov}(X_i,Y_j))_{n\times n} \\ &=\big(E\big[(X_i-EX_i)(Y_j-EY_j)\big]\big)_{n\times n} \\ &= E\big[(\pmb{X}-E\pmb{X})(\pmb{Y}-E\pmb{Y})^\top\big] \end{aligned}

      Cov(XXX,YYY)=(Cov(Xi,Yj))n×n=(E[(XiEXi)(YjEYj)])n×n=E[(XXXEXXX)(YYYEYYY)]

  • 方差矩阵性质:

    Var

    (

    A

    X

    )

    =

    A

    Var

    (

    X

    )

    A

    \text{Var}(\pmb{AX}) = \pmb{A} \text{Var}(\pmb{X})\pmb{A}^\top

    Var(AXAXAX)=AAAVar(XXX)AAA,证明如下

    Var

    (

    A

    X

    )

    =

    E

    [

    (

    A

    X

    E

    A

    X

    )

    (

    A

    X

    E

    A

    X

    )

    ]

    =

    E

    [

    (

    A

    X

    A

    E

    X

    )

    (

    A

    X

    A

    E

    X

    )

    ]

    =

    A

    E

    [

    (

    X

    E

    X

    )

    (

    A

    (

    X

    E

    X

    )

    )

    ]

    =

    A

    E

    [

    (

    X

    E

    X

    )

    (

    X

    E

    X

    )

    A

    ]

    =

    A

    E

    [

    (

    X

    E

    X

    )

    (

    X

    E

    X

    )

    ]

    A

    =

    A

    Var

    (

    X

    )

    A

    \begin{aligned} \text{Var}(\pmb{AX}) &= E\big[(\pmb{AX}-E\pmb{AX})(\pmb{AX}-E\pmb{AX})^\top\big]\\ &= E\big[(\pmb{AX}-\pmb{A}E\pmb{X})(\pmb{AX}-\pmb{A}E\pmb{X})^\top\big]\\ &= \pmb{A}E\big[(\pmb{X}-E\pmb{X})(\pmb{A}(\pmb{X}-E\pmb{X})^\top)\big]\\ &= \pmb{A}E\big[(\pmb{X}-E\pmb{X})(\pmb{X}-E\pmb{X})^\top\pmb{A}^\top\big]\\ &= \pmb{A}E\big[(\pmb{X}-E\pmb{X})(\pmb{X}-E\pmb{X})^\top\big]\pmb{A}^\top\\ &=\pmb{A} \text{Var}(\pmb{X})\pmb{A}^\top \end{aligned}

    Var(AXAXAX)=E[(AXAXAXEAXAXAX)(AXAXAXEAXAXAX)]=E[(AXAXAXAAAEXXX)(AXAXAXAAAEXXX)]=AAAE[(XXXEXXX)(AAA(XXXEXXX))]=AAAE[(XXXEXXX)(XXXEXXX)AAA]=AAAE[(XXXEXXX)(XXXEXXX)]AAA=AAAVar(XXX)AAA 说明:随机变量的线性组合仍是随机变量,对于一组随机变量,或者 “随机向量” 而言,可以对它们进行线性组合得到一个新的 “随机向量”,并用矩阵形式表示为

    A

    r

    ×

    n

    X

    n

    ×

    1

    =

    X

    r

    ×

    1

    \pmb{A}_{r\times n}\pmb{X}_{n\times 1} = \pmb{X}’_{r\times 1}

    AAAr×nXXXn×1=XXXr×1,即上式中

    A

    X

    \pmb{AX}

    AXAXAX

2. 多维 r.v. 的分布函数

  • 对于多维 r.v.s.(随机向量)

    X

    =

    [

    X

    1

    X

    2

    X

    n

    ]

    \pmb{X} = \begin{bmatrix}X_1\\X_2\\\vdots \\X_n \end{bmatrix}

    XXX=X1X2Xn,其分布函数定义为

    F

    (

    X

    )

    =

    F

    (

    X

    1

    ,

    X

    2

    ,

    .

    .

    .

    ,

    X

    n

    )

    =

    P

    (

    X

    1

    x

    1

    ,

    X

    2

    x

    2

    ,

    .

    .

    .

    ,

    X

    n

    x

    n

    )

    =

    P

    (

    X

    x

    )

    F(\pmb{X}) = F(X_1,X_2,…,X_n) = P(X_1\leq x_1,X_2 \leq x_2,…,X_n\leq x_n) = P(\pmb{X} \leq \pmb{x})

    F(XXX)=F(X1,X2,...,Xn)=P(X1x1,X2x2,...,Xnxn)=P(XXXxxx)

  • 两道例题
    1. X

      t

      =

      ξ

      c

      o

      s

      t

      X_t = \xi cost

      Xt=ξcost,其中

      P

      (

      ξ

      =

      1

      )

      =

      P

      (

      ξ

      =

      2

      )

      =

      P

      (

      ξ

      =

      3

      )

      =

      1

      3

      ,

      t

      R

      P(\xi=1)=P(\xi=2)=P(\xi=3)=\frac{1}{3},t\in\mathbb{R}

      P(ξ=1)=P(ξ=2)=P(ξ=3)=31,tR,这样就可以通过选取不同的实数

      t

      t

      t 得到任意维随机向量

      {

      X

      t

      }

      \{X_t\}

      {Xt}。求一维分布

      F

      (

      x

      ;

      π

      4

      )

      ,

      F

      (

      x

      ;

      π

      2

      )

      F(x;\frac{\pi}{4}),F(x;\frac{\pi}{2})

      F(x;4π),F(x;2π) 和二维分布

      F

      (

      x

      1

      ,

      x

      2

      ;

      0

      ,

      π

      3

      )

      F(x_1,x_2;0,\frac{\pi}{3})

      F(x1,x2;0,3π)

    2. X

      t

      =

      ξ

      +

      η

      t

      X_t = \xi +\eta t

      Xt=ξ+ηt,其中

      ξ

      ,

      η

      \xi,\eta

      ξ,η 为互相独立的标准正态分布,

      t

      R

      t\in\mathbb{R}

      tR,这样就可以通过选取不同的实数

      t

      t

      t 得到任意维随机向量

      {

      X

      t

      }

      \{X_t\}

      {Xt},求一维分布和二维分布
      在这里插入图片描述
      注:右边第1题答案中第3问,分布列应该是

      X

      t

      =

      π

      3

      =

      1

      2

      ,

      1

      ,

      3

      2

      X_{t=\frac{\pi}{3}} = \frac{1}{2},1,\frac{3}{2}

      Xt=3π=21,1,23,订正一下

3. 多维 r.v. 的函数(统计量)的概率密度

  • 以二维情况为例,设二维 r.v.

    X

    =

    (

    X

    1

    ,

    X

    2

    )

    \pmb{X}=(X_1,X_2)

    XXX=(X1,X2) 的概率密度函数为

    f

    X

    (

    x

    1

    ,

    x

    2

    )

    =

    {

    f

    X

    G

    (

    x

    1

    ,

    x

    2

    )

    ,

    (

    x

    1

    ,

    x

    2

    )

    G

    R

    0

    ,

    (

    x

    1

    ,

    x

    2

    )

    G

    f_{\mathbf{X}}(x_1,x_2) = \left\{ \begin{aligned} &f_{\mathbf{X}}^G(x_1,x_2) &&,(x_1,x_2)\in G \subset \mathbb{R} \\ &0 &&,(x_1,x_2)\notin G\\ \end{aligned} \right.

    fX(x1,x2)={fXG(x1,x2)0,(x1,x2)GR,(x1,x2)/G 当有

    {

    Y

    1

    =

    g

    1

    (

    X

    1

    ,

    X

    2

    )

    Y

    2

    =

    g

    2

    (

    X

    1

    ,

    X

    2

    )

    \left\{\begin{aligned}&Y_1 = g_1(X_1,X_2) \\&Y_2 = g_2(X_1,X_2) \end{aligned}\right.

    {Y1=g1(X1,X2)Y2=g2(X1,X2) 时,求

    Y

    =

    (

    Y

    1

    ,

    Y

    2

    )

    \pmb{Y} = (Y_1,Y_2)

    YYY=(Y1,Y2) 的概率密度函数

    f

    Y

    (

    y

    1

    ,

    y

    2

    )

    f_{\mathbf{Y}}(y_1,y_2)

    fY(y1,y2)

  • 遵循以下过程求解
    1. 依题意,对于

      X

      1

      ,

      X

      2

      X_1,X_2

      X1,X2 的任意取值

      x

      1

      ,

      x

      2

      x_1,x_2

      x1,x2,变换

      T

      T

      T

      T

      :

      {

      y

      1

      =

      g

      1

      (

      x

      1

      ,

      x

      2

      )

      y

      2

      =

      g

      2

      (

      x

      1

      ,

      x

      2

      )

      T:\left\{ \begin{aligned} &y_1 = g_1(x_1,x_2) \\ &y_2 = g_2(x_1,x_2) \end{aligned} \right.

      T:{y1=g1(x1,x2)y2=g2(x1,x2) 利用变换

      T

      T

      T,把取值范围变换过来,即利用所有概率非0的

      (

      x

      1

      ,

      x

      2

      )

      (x_1,x_2)

      (x1,x2) 找出所有概率非零的

      (

      y

      1

      ,

      y

      2

      )

      (y_1,y_2)

      (y1,y2)

      G

      =

      T

      (

      G

      )

      G^* = T(G)

      G=T(G)

    2. 下面求

      T

      T

      T 的反函数(即利用

      y

      \pmb{y}

      yyy 表示

      x

      \pmb{x}

      xxx),先假设有唯一的反函数

      {

      x

      1

      =

      x

      1

      (

      y

      1

      ,

      y

      2

      )

      x

      2

      =

      x

      2

      (

      y

      1

      ,

      y

      2

      )

      \left\{ \begin{aligned} &x_1 = x_1(y_1,y_2) \\ &x_2 = x_2(y_1,y_2) \end{aligned} \right.

      {x1=x1(y1,y2)x2=x2(y1,y2)

    3. 计算 Jacobi 行列式 (Jacobi 矩阵的行列式)

      J

      =

      (

      x

      1

      ,

      x

      2

      )

      (

      y

      1

      ,

      y

      2

      )

      =

      x

      1

      y

      1

      x

      2

      y

      1

      x

      1

      y

      2

      x

      2

      y

      2

      |\pmb{J}| = \begin{vmatrix} \frac{\partial(x_1,x_2)}{\partial(y_1,y_2)}\end{vmatrix} = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_2}{\partial y_1} \\ \frac{\partial x_1}{\partial y_2} & \frac{\partial x_2}{\partial y_2} \end{vmatrix}

      JJJ=(y1,y2)(x1,x2)=y1x1y2x1y1x2y2x2 得到

      Y

      =

      {

      Y

      1

      ,

      Y

      2

      }

      \pmb{Y} = \{Y_1,Y_2\}

      YYY={Y1,Y2} 的 p.d.f. 为

      f

      Y

      (

      y

      1

      ,

      y

      2

      )

      =

      {

      f

      X

      G

      (

      x

      1

      (

      y

      1

      ,

      y

      2

      )

      ,

      x

      2

      (

      y

      1

      ,

      y

      2

      )

      )

      J

      ,

      (

      y

      1

      ,

      y

      2

      )

      G

      0

      ,

      (

      y

      1

      ,

      y

      2

      )

      G

      f_{\mathbf{Y}}(y_1,y_2) = \left\{ \begin{aligned} &f_{\mathbf{X}}^G\big(x_1(y_1,y_2),x_2(y_1,y_2)\big) |\pmb{J}| &&,(y_1,y_2)\in G^* \\ &0 &&,(y_1,y_2)\notin G^*\\ \end{aligned} \right.

      fY(y1,y2)={fXG(x1(y1,y2),x2(y1,y2))JJJ0,(y1,y2)G,(y1,y2)/G

    4. 若第 2 步中的反函数不唯一,则对每个反函数

      x

      (

      i

      )

      \pmb{x}^{(i)}

      xxx(i) 计算对应的 Jacobi 行列式

      J

      (

      i

      )

      ,

      i

      =

      1

      ,

      2

      ,

      .

      .

      .

      ,

      n

      |\pmb{J}^{(i)}|,i=1,2,…,n

      JJJ(i),i=1,2,...,n,最后得到

      Y

      =

      {

      Y

      1

      ,

      Y

      2

      }

      \pmb{Y} = \{Y_1,Y_2\}

      YYY={Y1,Y2} 的 p.d.f. 为

      f

      Y

      (

      y

      1

      ,

      y

      2

      )

      =

      {

      i

      =

      1

      n

      f

      X

      G

      (

      x

      1

      (

      i

      )

      (

      y

      1

      ,

      y

      2

      )

      ,

      x

      2

      (

      i

      )

      (

      y

      1

      ,

      y

      2

      )

      )

      J

      (

      i

      )

      ,

      (

      y

      1

      ,

      y

      2

      )

      G

      0

      ,

      (

      y

      1

      ,

      y

      2

      )

      G

      f_{\mathbf{Y}}(y_1,y_2) = \left\{ \begin{aligned} &\sum_{i=1}^nf_{\mathbf{X}}^G\big(x_1^{(i)}(y_1,y_2),x_2^{(i)}(y_1,y_2)\big) |\pmb{J}^{(i)}| &&,(y_1,y_2)\in G^* \\ &0 &&,(y_1,y_2)\notin G^*\\ \end{aligned} \right.

      fY(y1,y2)=i=1nfXG(x1(i)(y1,y2),x2(i)(y1,y2))JJJ(i)0,(y1,y2)G,(y1,y2)/G

  • 例题:
    1. 设 r.v.s

      {

      X

      ,

      Y

      }

      \{X,Y\}

      {X,Y}

      X

      ,

      Y

      ϵ

      (

      1

      )

      X,Y\sim \epsilon(1)

      X,Yϵ(1) 且相互独立,对于如下线性变换,求

      g

      (

      u

      ,

      v

      )

      g(u,v)

      g(u,v) 的 p.d.f

      {

      U

      =

      X

      +

      Y

      V

      =

      X

      /

      Y

      \left\{ \begin{aligned} &U = X+Y \\ &V = X/Y \end{aligned} \right.

      {U=X+YV=X/Y 注意

      X

      ,

      Y

      X,Y

      X,Y 独立

      F

      X

      ,

      Y

      (

      x

      ,

      y

      )

      =

      F

      X

      (

      x

      )

      F

      Y

      (

      y

      )

      \Leftrightarrow F_{X,Y}(x,y) = F_X(x)F_Y(y)

      FX,Y(x,y)=FX(x)FY(y),答案如下
      在这里插入图片描述

    2. 设 r.v.s

      {

      X

      ,

      Y

      }

      \{X,Y\}

      {X,Y}

      X

      ,

      Y

      N

      (

      0

      ,

      σ

      2

      )

      X,Y\sim N(0,\sigma^2)

      X,YN(0,σ2) 且相互独立,对于如下线性变换,求

      g

      (

      u

      ,

      v

      )

      g(u,v)

      g(u,v) 的 p.d.f

      {

      U

      =

      X

      2

      +

      Y

      2

      V

      =

      X

      /

      Y

      \left\{ \begin{aligned} &U = \sqrt{X^2+Y^2} \\ &V = X/Y \end{aligned} \right.

      {U=X2+Y2
      V=X/Y
      注意

      X

      ,

      Y

      X,Y

      X,Y 独立

      F

      X

      ,

      Y

      (

      x

      ,

      y

      )

      =

      F

      X

      (

      x

      )

      F

      Y

      (

      y

      )

      \Leftrightarrow F_{X,Y}(x,y) = F_X(x)F_Y(y)

      FX,Y(x,y)=FX(x)FY(y),答案如下
      在这里插入图片描述


版权声明:本文为wxc971231原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。