具有典型非线性特性的二阶系统的相轨迹(1)

  • Post author:
  • Post category:其他




1.典型非线性特性数学表达式



(1)饱和非线性特性

在这里插入图片描述





y

(

t

)

=

{

M

,

  
  

x

(

t

)

>

a

K

x

(

t

)

,

x

(

t

)

a

M

,

x

(

t

)

<

a

y(t)= \left\{\begin{array}{l} M, \ \ \;\qquad x(t) > a \\ Kx(t), \quad |x(t)| ⩽a \\ -M, \qquad x(t) <-a \end{array}\right.






y


(


t


)




=



































































M


,












x


(


t


)




>




a








K


x


(


t


)


,









x


(


t


)












a











M


,






x


(


t


)




<







a





























(2)死区特性

在这里插入图片描述





y

(

t

)

=

{

K

x

(

t

)

a

,

x

(

t

)

>

a

0

,

   

x

(

t

)

a

K

x

(

t

)

+

a

,

x

(

t

)

<

a

y(t)= \left\{\begin{array}{l} Kx(t)-a, \quad x(t) > a \\ 0, \qquad \qquad \ \ \ |x(t)| ⩽a \\ Kx(t)+a, \quad x(t) <-a \end{array}\right.






y


(


t


)




=



































































K


x


(


t


)









a


,






x


(


t


)




>




a








0


,

















x


(


t


)












a








K


x


(


t


)




+




a


,






x


(


t


)




<







a





























(3)变增益特性

在这里插入图片描述





y

(

t

)

=

{

K

1

x

(

t

)

,

x

(

t

)

a

K

2

x

(

t

)

,

x

(

t

)

>

a

y(t)= \left\{\begin{array}{l} K_1x(t), \quad |x(t)| ⩽a \\ K_2x(t), \quad |x(t)| >a \end{array}\right.






y


(


t


)




=










{

















K










1


















x


(


t


)


,









x


(


t


)












a









K










2


















x


(


t


)


,









x


(


t


)







>




a





























2.具有典型非线性环节的二阶系统的相轨迹

系统的结构图

在这里插入图片描述

线性部分为二阶系统





G

(

s

)

=

K

s

(

T

s

+

1

)

G(s)=\frac{K}{s(Ts+1)}






G


(


s


)




=



















s


(


T


s




+




1


)














K

























其中



K

>

0.

 

T

>

0

K>0.\ T>0






K




>








0


.




T




>








0





。取



e

e

˙

e-\dot{e}






e





















e







˙










平面,列写系统的微分方程





{

e

=

r

c

u

K

s

(

T

s

+

1

)

=

c

\left\{\begin{array}{l} e=r-c \\ u{\cfrac{K}{s(Ts+1)}}=c \end{array}\right.

































































e




=




r









c








u














s


(


T


s




+




1


)














K























=




c





























化简可得





T

e

¨

+

e

˙

=

T

r

¨

+

r

˙

K

u

T\ddot{e}+\dot{e}=T\ddot{r}+\dot{r}-Ku






T










e







¨









+
















e







˙









=








T










r







¨









+
















r







˙


















K


u







(1)饱和非线性特性

①当



r

=

0

r=0






r




=








0









r

=

1

(

t

)

r=1(t)






r




=








1


(


t


)











T

e

¨

+

e

˙

=

{

K

M

,

e

>

a

,

I

K

e

,

 

e

a

II

K

M

,

  
  

e

<

a

   III

T\ddot{e}+\dot{e}= \left\{\begin{array}{l} -KM, \qquad e > a, \quad \text{I}区 \\ -Ke, \ \,\qquad |e| ⩽ a \,\quad \text{II}区 \\ KM, \ \ \;\qquad e < -a \ \ \ \text{III}区 \end{array}\right.






T










e







¨









+
















e







˙









=






































































K


M


,






e




>




a


,







I















K


e


,













e












a







II












K


M


,












e




<







a









III

































开关线



e

=

±

a

e=\pm a






e




=








±


a









I

\text{I}







I










III

\text{III}







III






区的等倾线方程为





e

˙

=

K

M

T

α

+

1

\dot{e}=\frac{\mp KM}{T\alpha+1}














e







˙









=



















T


α




+




1

















K


M

























由二阶线性系统的相轨迹分析可知,这两个区域无奇点。当



α

=

0

\alpha=0






α




=








0





时,会有两条特殊的等倾斜线





e

˙

=

K

M

\dot{e}=\mp KM














e







˙









=











K


M







在这里插入图片描述




II

\text{II}







II






区的微分方程为





T

e

¨

+

e

˙

+

K

e

=

0

T\ddot{e}+\dot{e}+Ke=0






T










e







¨









+
















e







˙









+








K


e




=








0







由二阶线性系统的相轨迹分析可知,该区域奇点为原点。微分方程特征根为





s

1

,

2

=

2

±

1

4

K

T

2

s_{1,2}=\frac{-2\pm\sqrt{1-4KT}}{2}







s











1


,


2





















=



















2

















2




±












1









4


K


T















































奇点为稳定节点或者稳定焦点,等倾线方程





e

˙

=

K

T

α

+

1

e

\dot{e}=-\frac{K}{T\alpha+1}e














e







˙









=






















T


α




+




1














K




















e







过零点的一簇直线。





T

=

1

T=1






T




=








1









K

=

1

K=1






K




=








1









a

=

2

a=2






a




=








2









M

=

1

M=1






M




=








1





,奇点为稳定焦点,相轨迹图

在这里插入图片描述





T

=

1

T=1






T




=








1









K

=

0.24

K=0.24






K




=








0


.


2


4









a

=

0.2

a=0.2






a




=








0


.


2









M

=

1

M=1






M




=








1





,奇点为稳定节点,相轨迹图

在这里插入图片描述

②当



r

=

v

t

r=vt






r




=








v


t











T

e

¨

+

e

˙

v

=

{

K

M

,

e

>

a

 

I

K

e

,

 

e

a

II

K

M

,

  
  

e

<

a

   III

T\ddot{e}+\dot{e}-v= \left\{\begin{array}{l} -KM, \qquad e > a \ \,\quad \text{I}区 \\ -Ke, \ \,\qquad |e| ⩽ a \,\quad \text{II}区 \\ KM, \ \ \;\qquad e < -a \ \ \ \text{III}区 \end{array}\right.






T










e







¨









+
















e







˙


















v




=






































































K


M


,






e




>




a









I















K


e


,













e












a







II












K


M


,












e




<







a









III

































开关线



e

=

±

a

e=\pm a






e




=








±


a









I

\text{I}







I










III

\text{III}







III






区的等倾线方程为





e

˙

=

v

K

M

T

α

+

1

\dot{e}=\frac{v \mp KM}{T\alpha+1}














e







˙









=



















T


α




+




1














v









K


M





























v

K

M

=

0

v-KM=0






v













K


M




=








0





时,



I

\text{I}







I






区奇点位于



e

e






e





轴上,



III

\text{III}







III






区无奇点。当



v

K

M

0

v-KM\not=0






v













K


M










































=








0





时,



I

\text{I}







I






区和



III

\text{III}







III






区无奇点。当



α

=

0

\alpha=0






α




=








0





时,会有两条特殊的等倾斜线





e

˙

=

v

K

M

\dot{e}=v \mp KM














e







˙









=








v













K


M










II

\text{II}







II






区的微分方程为





T

e

¨

+

e

˙

+

K

e

=

v

T\ddot{e}+\dot{e}+Ke=v






T










e







¨









+
















e







˙









+








K


e




=








v







改写微分方程





α

=

d

e

˙

d

e

=

v

K

e

e

˙

T

e

˙

\alpha=\frac{\mathrm{d}\dot{e}}{\mathrm{d}e}=\frac{v-Ke-\dot{e}}{T\dot{e}}






α




=




















d



e















d











e







˙



























=



















T










e







˙



















v









K


e

















e







˙






























该区域奇点为



(

v

/

K

,

0

)

(v/K,0)






(


v


/


K


,




0


)





。微分方程特征根为





s

1

,

2

=

2

±

1

4

K

T

2

s_{1,2}=\frac{-2\pm\sqrt{1-4KT}}{2}







s











1


,


2





















=



















2

















2




±












1









4


K


T















































奇点为稳定节点或者稳定焦点,等倾线方程





e

˙

=

1

T

α

+

1

(

K

e

+

v

)

\dot{e}=\frac{1}{T\alpha+1}(-Ke+v)














e







˙









=



















T


α




+




1














1




















(





K


e




+








v


)







过点



(

v

/

K

,

0

)

(v/K,0)






(


v


/


K


,




0


)





的一簇直线。





T

=

1

T=1






T




=








1









K

=

1

K=1






K




=








1









a

=

2

a=2






a




=








2









M

=

1

M=1






M




=








1









v

=

1

v=1






v




=








1





,奇点



(

1

,

0

)

(1,0)






(


1


,




0


)





为稳定焦点,相轨迹图

在这里插入图片描述





T

=

1

T=1






T




=








1









K

=

0.4

K=0.4






K




=








0


.


4









a

=

2

a=2






a




=








2









M

=

1

M=1






M




=








1









v

=

1

v=1






v




=








1





,奇点



(

2.5

,

0

)

(2.5,0)






(


2


.


5


,




0


)





为稳定焦点,相轨迹图

在这里插入图片描述





T

=

1

T=1






T




=








1









K

=

2

K=2






K




=








2









a

=

2

a=2






a




=








2









M

=

1

M=1






M




=








1









v

=

1

v=1






v




=








1





,奇点



(

0.5

,

0

)

(0.5,0)






(


0


.


5


,




0


)





为稳定焦点,相轨迹图

在这里插入图片描述





T

=

1

T=1






T




=








1









K

=

0.24

K=0.24






K




=








0


.


2


4









a

=

6

a=6






a




=








6









M

=

1

M=1






M




=








1









v

=

1

v=1






v




=








1





,奇点(4.167,0)为稳定节点,相轨迹图

在这里插入图片描述





T

=

1

T=1






T




=








1









K

=

0.24

K=0.24






K




=








0


.


2


4









a

=

0.2

a=0.2






a




=








0


.


2









M

=

1

M=1






M




=








1









v

=

1

v=1






v




=








1





,奇点



(

4.167

,

0

)

(4.167,0)






(


4


.


1


6


7


,




0


)





为稳定焦点,相轨迹图

在这里插入图片描述



(2)死区特性

①当



r

=

0

r=0






r




=








0









r

=

1

(

t

)

r=1(t)






r




=








1


(


t


)











T

e

¨

+

e

˙

=

{

(

K

e

a

)

,

e

>

a

 

I

0

,

  

 
  

e

a

 

II

(

K

e

+

a

)

,

e

<

a

  

III

T\ddot{e}+\dot{e}= \left\{\begin{array}{l} -(Ke-a), \quad e > a \ \,\quad \text{I}区 \\ 0, \qquad \qquad \ \ \,\ \; e ⩽a \ \,\quad \text{II}区 \\ -(Ke+a), \quad e <-a \ \ \,\text{III}区 \end{array}\right.






T










e







¨









+
















e







˙









=






































































(


K


e









a


)


,






e




>




a









I












0


,


















e









a









II















(


K


e




+




a


)


,






e




<







a









III

































开关线



e

=

±

a

e=\pm a






e




=








±


a









I

\text{I}







I










III

\text{III}







III






区的等倾线方程为





e

˙

=

1

T

α

+

1

(

K

e

±

a

)

\dot{e}=\frac{1}{T\alpha+1}(-Ke\pm a)














e







˙









=



















T


α




+




1














1




















(





K


e




±








a


)







奇点为



(

±

a

/

K

,

0

)

(\pm a/K,0)






(


±


a


/


K


,




0


)





,奇点为稳定节点或者稳定焦点。



II

\text{II}







II






区的相轨迹为





α

=

d

e

˙

d

e

=

1

T

\alpha=\frac{\mathrm{d}\dot{e}}{\mathrm{d}e}=\frac{1}{T}






α




=




















d



e















d











e







˙



























=



















T














1

























斜率为



1

/

T

1/T






1


/


T





的直线,奇点为



e

˙

=

0

\dot{e}=0














e







˙









=








0









e

(

a

,

a

)

e\in(-a,a)






e













(





a


,




a


)





的连续奇点。





T

=

1

T=1






T




=








1









K

=

1

K=1






K




=








1









a

=

1

a=1






a




=








1









M

=

1

M=1






M




=








1





,奇点



(

±

1

,

0

)

(\pm1,0)






(


±


1


,




0


)





为稳定焦点,相轨迹图

在这里插入图片描述





T

=

1

T=1






T




=








1









K

=

0.24

K=0.24






K




=








0


.


2


4









a

=

1

a=1






a




=








1









M

=

1

M=1






M




=








1





,奇点



(

±

4.16

,

0

)

(\pm 4.16,0)






(


±


4


.


1


6


,




0


)





为稳定节点,相轨迹图

在这里插入图片描述

②当



r

=

v

t

r=vt






r




=








v


t











T

e

¨

+

e

˙

v

=

{

(

K

e

a

)

,

e

>

a

 

I

0

,

  

 
  

e

a

 

II

(

K

e

+

a

)

,

e

<

a

  

III

T\ddot{e}+\dot{e}-v= \left\{\begin{array}{l} -(Ke-a), \quad e > a \ \,\quad \text{I}区 \\ 0, \qquad \qquad \ \ \,\ \; e ⩽a \ \,\quad \text{II}区 \\ -(Ke+a), \quad e <-a \ \ \,\text{III}区 \end{array}\right.






T










e







¨









+
















e







˙


















v




=






































































(


K


e









a


)


,






e




>




a









I












0


,


















e









a









II















(


K


e




+




a


)


,






e




<







a









III

































开关线



e

=

±

a

e=\pm a






e




=








±


a









I

\text{I}







I










III

\text{III}







III






区的等倾线方程为





e

˙

=

1

T

α

+

1

(

K

e

±

a

+

v

)

\dot{e}=\frac{1}{T\alpha+1}(-Ke\pm a+v)














e







˙









=



















T


α




+




1














1




















(





K


e




±








a




+








v


)







奇点为



(

(

±

a

+

v

)

/

K

,

0

)

((\pm a+v)/K,0)






(


(


±


a




+








v


)


/


K


,




0


)





,奇点为稳定节点或者稳定焦点。



II

\text{II}







II






区的等倾斜线方程





e

˙

=

v

T

α

+

1

\dot{e}=\frac{v}{T\alpha+1}














e







˙









=



















T


α




+




1














v

























该区域无奇点。





T

=

1

T=1






T




=








1









K

=

1

K=1






K




=








1









a

=

1

a=1






a




=








1









M

=

1

M=1






M




=








1









v

=

1

v=1






v




=








1





,奇点



(

0

,

0

)

(0,0)






(


0


,




0


)









(

2

,

0

)

(2,0)






(


2


,




0


)





为稳定焦点,相轨迹图

在这里插入图片描述





T

=

1

T=1






T




=








1









K

=

1

K=1






K




=








1









a

=

1

a=1






a




=








1









M

=

1

M=1






M




=








1









v

=

0.5

v=0.5






v




=








0


.


5





,奇点



(

0.5

,

0

)

(-0.5,0)






(





0


.


5


,




0


)









(

1.5

,

0

)

(1.5,0)






(


1


.


5


,




0


)





为稳定焦点,相轨迹图

在这里插入图片描述





T

=

1

T=1






T




=








1









K

=

1

K=1






K




=








1









a

=

1

a=1






a




=








1









M

=

1

M=1






M




=








1









v

=

2

v=2






v




=








2





,奇点



(

1

,

0

)

(1,0)






(


1


,




0


)









(

3

,

0

)

(3,0)






(


3


,




0


)





为稳定焦点,相轨迹图

在这里插入图片描述





T

=

1

T=1






T




=








1









K

=

1

K=1






K




=








1









a

=

4

a=4






a




=








4









M

=

1

M=1






M




=








1









v

=

2

v=2






v




=








2





,奇点



(

1

,

0

)

(1,0)






(


1


,




0


)









(

3

,

0

)

(3,0)






(


3


,




0


)





为稳定焦点,相轨迹图

在这里插入图片描述





T

=

1

T=1






T




=








1









K

=

0.24

K=0.24






K




=








0


.


2


4









a

=

1

a=1






a




=








1









M

=

1

M=1






M




=








1









v

=

1

v=1






v




=








1





,奇点



(

8.333

,

0

)

(8.333,0)






(


8


.


3


3


3


,




0


)









(

0

,

0

)

(0,0)






(


0


,




0


)





为稳定节点,相轨迹图

在这里插入图片描述





T

=

1

T=1






T




=








1









K

=

0.24

K=0.24






K




=








0


.


2


4









a

=

1

a=1






a




=








1









M

=

1

M=1






M




=








1









v

=

0.5

v=0.5






v




=








0


.


5





,奇点



(

6.25

,

0

)

(6.25,0)






(


6


.


2


5


,




0


)









(

2.083

,

0

)

(-2.083,0)






(





2


.


0


8


3


,




0


)





为稳定节点,相轨迹图

在这里插入图片描述





T

=

1

T=1






T




=








1









K

=

0.24

K=0.24






K




=








0


.


2


4









a

=

1

a=1






a




=








1









M

=

1

M=1






M




=








1









v

=

2

v=2






v




=








2





,奇点



(

12.5

,

0

)

(12.5,0)






(


1


2


.


5


,




0


)









(

4.167

,

0

)

(4.167,0)






(


4


.


1


6


7


,




0


)





为稳定节点,相轨迹图

在这里插入图片描述



(3)变增益特性

①当



r

=

0

r=0






r




=








0









r

=

1

(

t

)

r=1(t)






r




=








1


(


t


)











T

e

¨

+

e

˙

=

{

K

1

e

,

e

a

I

K

2

e

,

e

>

a

II

T\ddot{e}+\dot{e}= \left\{\begin{array}{l} -K_1e, \quad |e| ⩽a \quad \text{I}区 \\ -K_2e, \quad |e| >a \quad \text{II}区 \end{array}\right.






T










e







¨









+
















e







˙









=










{




















K










1


















e


,









e












a





I
















K










2


















e


,









e







>




a





II

































开关线



e

=

±

a

e=\pm a






e




=








±


a









I

\text{I}







I






区的等倾线方程为





e

˙

=

K

1

e

T

α

+

1

\dot{e}=\frac{-K_1e}{T\alpha+1}














e







˙









=



















T


α




+




1


















K










1


















e

























奇点为



(

0

,

0

)

(0,0)






(


0


,




0


)





,奇点为稳定节点或者稳定焦点。



I

\text{I}







I






区的等倾线方程为





e

˙

=

K

2

e

T

α

+

1

\dot{e}=\frac{-K_2e}{T\alpha+1}














e







˙









=



















T


α




+




1


















K










2


















e

























奇点为



(

0

,

0

)

(0,0)






(


0


,




0


)





,奇点为稳定节点或者稳定焦点。





T

=

1

T=1






T




=








1









K

1

=

0.5

K_1=0.5







K










1




















=








0


.


5









K

2

=

1

K_2=1







K










2




















=








1









a

=

1

a=1






a




=








1









M

=

1

M=1






M




=








1





,奇点为稳定焦点,相轨迹图

在这里插入图片描述





T

=

1

T=1






T




=








1









K

1

=

1

K_1=1







K










1




















=








1









K

2

=

0.24

K_2=0.24







K










2




















=








0


.


2


4









a

=

1

a=1






a




=








1









M

=

1

M=1






M




=








1





,奇点为稳定焦点,相轨迹图

在这里插入图片描述





T

=

1

T=1






T




=








1









K

1

=

0.24

K_1=0.24







K










1




















=








0


.


2


4









K

2

=

1

K_2=1







K










2




















=








1









a

=

1

a=1






a




=








1









M

=

1

M=1






M




=








1





,奇点为稳定节点,相轨迹图

在这里插入图片描述





T

=

1

T=1






T




=








1









K

1

=

0.2

K_1=0.2







K










1




















=








0


.


2









K

2

=

0.24

K_2=0.24







K










2




















=








0


.


2


4









a

=

1

a=1






a




=








1









M

=

1

M=1






M




=








1





,奇点为稳定节点,相轨迹图

在这里插入图片描述

②当



r

=

v

t

r=vt






r




=








v


t











T

e

¨

+

e

˙

v

=

{

K

1

e

,

e

a

I

K

2

e

,

e

>

a

II

T\ddot{e}+\dot{e}-v= \left\{\begin{array}{l} -K_1e, \quad |e| ⩽a \quad \text{I}区 \\ -K_2e, \quad |e| >a \quad \text{II}区 \end{array}\right.






T










e







¨









+
















e







˙


















v




=










{




















K










1


















e


,









e












a





I
















K










2


















e


,









e







>




a





II

































开关线



e

=

±

a

e=\pm a






e




=








±


a









I

\text{I}







I






区的等倾线方程为





e

˙

=

1

T

α

+

1

(

K

1

e

+

v

)

\dot{e}=\frac{1}{T\alpha+1}(-K_1e +v)














e







˙









=



















T


α




+




1














1




















(






K










1


















e




+








v


)







奇点为



(

v

/

K

1

,

0

)

(v/K_1,0)






(


v


/



K










1


















,




0


)





,奇点为稳定节点或者稳定焦点。



I

\text{I}







I






区的等倾线方程为





e

˙

=

1

T

α

+

1

(

K

2

e

+

v

)

\dot{e}=\frac{1}{T\alpha+1}(-K_2e +v)














e







˙









=



















T


α




+




1














1




















(






K










2


















e




+








v


)







奇点为



(

v

/

K

2

,

0

)

(v/K_2,0)






(


v


/



K










2


















,




0


)





,奇点为稳定节点或者稳定焦点。





T

=

1

T=1






T




=








1









K

1

=

2

K_1=2







K










1




















=








2









K

2

=

1

K_2=1







K










2




















=








1









a

=

1

a=1






a




=








1









M

=

1

M=1






M




=








1









v

=

1

v=1






v




=








1





,奇点为稳定焦点,相轨迹图

在这里插入图片描述





T

=

1

T=1






T




=








1









K

1

=

1

K_1=1







K










1




















=








1









K

2

=

0.24

K_2=0.24







K










2




















=








0


.


2


4









a

=

1

a=1






a




=








1









M

=

1

M=1






M




=








1









v

=

1

v=1






v




=








1





,奇点为稳定节点,相轨迹图

在这里插入图片描述





T

=

1

T=1






T




=








1









K

1

=

5

K_1=5







K










1




















=








5









K

2

=

0.24

K_2=0.24







K










2




















=








0


.


2


4









a

=

1

a=1






a




=








1









M

=

1

M=1






M




=








1









v

=

1

v=1






v




=








1





,奇点



(

0.2

,

0

)

(0.2,0)






(


0


.


2


,




0


)





为稳定焦点,



(

4.167

,

0

)

(4.167,0)






(


4


.


1


6


7


,




0


)





为稳定节点,相轨迹图

在这里插入图片描述



版权声明:本文为qq_41062383原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。