团灭 LeetCode 股票买卖问题

  • Post author:
  • Post category:其他




学算法认准




labuladong



后台回复




进群




进刷题

读完本文,可以去力扣解决如下题目:

121.买卖股票的最佳时机(简单)

122.买卖股票的最佳时机 II(简单)

123.买卖股票的最佳时机 III(困难)

188.买卖股票的最佳时机 IV(困难)

309.最佳买卖股票时机含冷冻期(中等)

714.买卖股票的最佳时机含手续费(中等)

006657aa726f744cfb81d35ce5775e71.png

很多读者抱怨 LeetCode 的股票系列问题奇技淫巧太多,如果面试真的遇到这类问题,基本不会想到那些巧妙的办法,怎么办?

所以本文拒绝奇技淫巧,而是稳扎稳打,只用一种通用方法解决所用问题,以不变应万变

这篇文章参考英文版高赞题解(文末原文链接)的思路,用状态机的技巧来解决,可以全部提交通过。不要觉得这个名词高大上,文学词汇而已,实际上就是 DP table,看一眼就明白了。

先随便抽出一道题,看看别人的解法:

int maxProfit(vector<int>& prices) {
    if(prices.empty()) return 0;
    int s1 = -prices[0], s2 = INT_MIN, s3 = INT_MIN, s4 = INT_MIN;

    for(int i = 1; i < prices.size(); ++i) {            
        s1 = max(s1, -prices[i]);
        s2 = max(s2, s1 + prices[i]);
        s3 = max(s3, s2 - prices[i]);
        s4 = max(s4, s3 + prices[i]);
    }
    return max(0, s4);
}

能看懂吧?会做了吗?不可能的,你看不懂,这才正常。就算你勉强看懂了,下一个问题你还是做不出来。为什么别人能写出这么诡异却又高效的解法呢?因为这类问题是有框架的,但是人家不会告诉你的,因为一旦告诉你,你五分钟就学会了,该算法题就不再神秘,变得不堪一击了。

本文就来告诉你这个框架,然后带着你一道一道秒杀。这篇文章用状态机的技巧来解决,可以全部提交通过。不要觉得这个名词高大上,文学词汇而已,实际上就是 DP table,看一眼就明白了。

这 6 道题目是有共性的,我就抽出来第 4 道题目,因为这道题是一个最泛化的形式,其他的问题都是这个形式的简化,看下题目:

12418bb3c0077cfcac37d12577419999.png

第一题是只进行一次交易,相当于

k = 1

;第二题是不限交易次数,相当于

k = +infinity

(正无穷);第三题是只进行 2 次交易,相当于

k = 2

;剩下两道也是不限次数,但是加了交易「冷冻期」和「手续费」的额外条件,其实就是第二题的变种,都很容易处理。

如果你还不熟悉题目,可以去 LeetCode 查看这些题目的内容,本文为了节省篇幅,就不列举这些题目的具体内容了。下面言归正传,开始解题。

一、穷举框架

首先,还是一样的思路:如何穷举?


动态规划核心套路

说过,动态规划算法本质上就是穷举「状态」,然后在「选择」中选择最优解。

那么对于这道题,我们具体到每一天,看看总共有几种可能的「状态」,再找出每个「状态」对应的「选择」。我们要穷举所有「状态」,穷举的目的是根据对应的「选择」更新状态。听起来抽象,你只要记住「状态」和「选择」两个词就行,下面实操一下就很容易明白了。

for 状态1 in 状态1的所有取值:
    for 状态2 in 状态2的所有取值:
        for ...
            dp[状态1][状态2][...] = 择优(选择1,选择2...)

比如说这个问题,

每天都有三种「选择」

:买入、卖出、无操作,我们用

buy

,

sell

,

rest

表示这三种选择。

但问题是,并不是每天都可以任意选择这三种选择的,因为

sell

必须在

buy

之后,

buy

必须在

sell

之后。那么

rest

操作还应该分两种状态,一种是

buy

之后的

rest

(持有了股票),一种是

sell

之后的

rest

(没有持有股票)。而且别忘了,我们还有交易次数

k

的限制,就是说你

buy

还只能在

k > 0

的前提下操作。

很复杂对吧,不要怕,我们现在的目的只是穷举,你有再多的状态,老夫要做的就是一把梭全部列举出来。


这个问题的「状态」有三个

,第一个是天数,第二个是允许交易的最大次数,第三个是当前的持有状态(即之前说的

rest

的状态,我们不妨用 1 表示持有,0 表示没有持有)。然后我们用一个三维数组就可以装下这几种状态的全部组合:

dp[i][k][0 or 1]
0 <= i <= n - 1, 1 <= k <= K
n 为天数,大 K 为交易数的上限,0 和 1 代表是否持有股票。
此问题共 n × K × 2 种状态,全部穷举就能搞定。

for 0 <= i < n:
    for 1 <= k <= K:
        for s in {0, 1}:
            dp[i][k][s] = max(buy, sell, rest)

而且我们可以用自然语言描述出每一个状态的含义,比如说

dp[3][2][1]

的含义就是:今天是第三天,我现在手上持有着股票,至今最多进行 2 次交易。再比如

dp[2][3][0]

的含义:今天是第二天,我现在手上没有持有股票,至今最多进行 3 次交易。很容易理解,对吧?

我们想求的最终答案是

dp[n - 1][K][0]

,即最后一天,最多允许

K

次交易,最多获得多少利润。

读者可能问为什么不是

dp[n - 1][K][1]

?因为

dp[n - 1][K][1]

代表到最后一天手上还持有股票,

dp[n - 1][K][0]

表示最后一天手上的股票已经卖出去了,很显然后者得到的利润一定大于前者。

记住如何解释「状态」,一旦你觉得哪里不好理解,把它翻译成自然语言就容易理解了。

二、状态转移框架

现在,我们完成了「状态」的穷举,我们开始思考每种「状态」有哪些「选择」,应该如何更新「状态」。

只看「持有状态」,可以画个状态转移图:

0eee7faea5f4942a23ec5722dcbaa51c.png

通过这个图可以很清楚地看到,每种状态(0 和 1)是如何转移而来的。根据这个图,我们来写一下状态转移方程:

dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
              max( 今天选择 rest,        今天选择 sell       )

解释:今天我没有持有股票,有两种可能,我从这两种可能中求最大利润:

1、我昨天就没有持有,且截至昨天最大交易次数限制为

k

;然后我今天选择

rest

,所以我今天还是没有持有,最大交易次数限制依然为

k

2、我昨天持有股票,且截至昨天最大交易次数限制为

k

;但是今天我

sell

了,所以我今天没有持有股票了,最大交易次数限制依然为

k

dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
              max( 今天选择 rest,         今天选择 buy         )

解释:今天我持有着股票,最大交易次数限制为

k

,那么对于昨天来说,有两种可能,我从这两种可能中求最大利润:

1、我昨天就持有着股票,且截至昨天最大交易次数限制为

k

;然后今天选择

rest

,所以我今天还持有着股票,最大交易次数限制依然为

k

2、我昨天本没有持有,且截至昨天最大交易次数限制为

k - 1

;但今天我选择

buy

,所以今天我就持有股票了,最大交易次数限制为

k

这里着重提醒一下,时刻牢记「状态」的定义,

k

的定义并不是「已进行的交易次数」,而是「最大交易次数的上限限制」。如果确定今天进行一次交易,且要保证截至今天最大交易次数上限为

k

,那么昨天的最大交易次数上限必须是

k - 1

这个解释应该很清楚了,如果

buy

,就要从利润中减去

prices[i]

,如果

sell

,就要给利润增加

prices[i]

。今天的最大利润就是这两种可能选择中较大的那个。

注意

k

的限制,在选择

buy

的时候相当于开启了一次交易,那么对于昨天来说,交易次数的上限

k

应该减小 1。

修正:以前我以为在

sell

的时候给

k

减小 1 和在

buy

的时候给

k

减小 1 是等效的,但细心的读者向我提出质疑,经过深入思考我发现前者确实是错误的,因为交易是从

buy

开始,如果

buy

的选择不改变交易次数

k

的约束,会出现交易次数超出限制的的错误。

现在,我们已经完成了动态规划中最困难的一步:状态转移方程。

如果之前的内容你都可以理解,那么你已经可以秒杀所有问题了,只要套这个框架就行了

。不过还差最后一点点,就是定义 base case,即最简单的情况。

dp[-1][...][0] = 0
解释:因为 i 是从 0 开始的,所以 i = -1 意味着还没有开始,这时候的利润当然是 0。

dp[-1][...][1] = -infinity
解释:还没开始的时候,是不可能持有股票的。
因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。

dp[...][0][0] = 0
解释:因为 k 是从 1 开始的,所以 k = 0 意味着根本不允许交易,这时候利润当然是 0。

dp[...][0][1] = -infinity
解释:不允许交易的情况下,是不可能持有股票的。
因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。

把上面的状态转移方程总结一下:

base case:
dp[-1][...][0] = dp[...][0][0] = 0
dp[-1][...][1] = dp[...][0][1] = -infinity

状态转移方程:
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])

读者可能会问,这个数组索引是 -1 怎么编程表示出来呢,负无穷怎么表示呢?这都是细节问题,有很多方法实现。现在完整的框架已经完成,下面开始具体化。

三、秒杀题目


第一题,k = 1

直接套状态转移方程,根据 base case,可以做一些化简:

dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
dp[i][1][1] = max(dp[i-1][1][1], dp[i-1][0][0] - prices[i]) 
            = max(dp[i-1][1][1], -prices[i])
解释:k = 0 的 base case,所以 dp[i-1][0][0] = 0。

现在发现 k 都是 1,不会改变,即 k 对状态转移已经没有影响了。
可以进行进一步化简去掉所有 k:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], -prices[i])

直接写出代码:

int n = prices.length;
int[][] dp = new int[n][2];
for (int i = 0; i < n; i++) {
    dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
    dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
return dp[n - 1][0];

显然

i = 0



i - 1

是不合法的索引,这是因为我们没有对

i

的 base case 进行处理,可以这样给一个特化处理:

if (i - 1 == -1) {
    dp[i][0] = 0;
    // 根据状态转移方程可得:
    //   dp[i][0] 
    // = max(dp[-1][0], dp[-1][1] + prices[i])
    // = max(0, -infinity + prices[i]) = 0

    dp[i][1] = -prices[i];
    // 根据状态转移方程可得:
    //   dp[i][1] 
    // = max(dp[-1][1], dp[-1][0] - prices[i])
    // = max(-infinity, 0 - prices[i]) 
    // = -prices[i]
    continue;
}

第一题就解决了,但是这样处理 base case 很麻烦,而且注意一下状态转移方程,新状态只和相邻的一个状态有关,其实不用整个

dp

数组,只需要一个变量储存相邻的那个状态就足够了,这样可以把空间复杂度降到 O(1):

// 原始版本
int maxProfit_k_1(int[] prices) {
    int n = prices.length;
    int[][] dp = new int[n][2];
    for (int i = 0; i < n; i++) {
        if (i - 1 == -1) {
            // base case
            dp[i][0] = 0;
            dp[i][1] = -prices[i];
            continue;
        }
        dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
        dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
    }
    return dp[n - 1][0];
}

// 空间复杂度优化版本
int maxProfit_k_1(int[] prices) {
    int n = prices.length;
    // base case: dp[-1][0] = 0, dp[-1][1] = -infinity
    int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
    for (int i = 0; i < n; i++) {
        // dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
        dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
        // dp[i][1] = max(dp[i-1][1], -prices[i])
        dp_i_1 = Math.max(dp_i_1, -prices[i]);
    }
    return dp_i_0;
}

两种方式都是一样的,不过这种编程方法简洁很多,但是如果没有前面状态转移方程的引导,是肯定看不懂的。后续的题目,你可以对比一下如何把

dp

数组的空间优化掉。


第二题,k = +infinity

如果

k

为正无穷,那么就可以认为

k



k - 1

是一样的。可以这样改写框架:

dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
            = max(dp[i-1][k][1], dp[i-1][k][0] - prices[i])

我们发现数组中的 k 已经不会改变了,也就是说不需要记录 k 这个状态了:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])

直接翻译成代码:

// 原始版本
int maxProfit_k_inf(int[] prices) {
    int n = prices.length;
    int[][] dp = new int[n][2];
    for (int i = 0; i < n; i++) {
        if (i - 1 == -1) {
            // base case
            dp[i][0] = 0;
            dp[i][1] = -prices[i];
            continue;
        }
        dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
        dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] - prices[i]);
    }
    return dp[n - 1][0];
}

// 空间复杂度优化版本
int maxProfit_k_inf(int[] prices) {
    int n = prices.length;
    int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
    for (int i = 0; i < n; i++) {
        int temp = dp_i_0;
        dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
        dp_i_1 = Math.max(dp_i_1, temp - prices[i]);
    }
    return dp_i_0;
}


第三题,k = +infinity with cooldown

每次

sell

之后要等一天才能继续交易。只要把这个特点融入上一题的状态转移方程即可:

dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-2][0] - prices[i])
解释:第 i 天选择 buy 的时候,要从 i-2 的状态转移,而不是 i-1 。

翻译成代码:

// 原始版本
int maxProfit_with_cool(int[] prices) {
    int n = prices.length;
    int[][] dp = new int[n][2];
    for (int i = 0; i < n; i++) {
        if (i - 1 == -1) {
            // base case 1
            dp[i][0] = 0;
            dp[i][1] = -prices[i];
            continue;
        }
        if (i - 2 == -1) {
            // base case 2
            dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
            // i - 2 小于 0 时根据状态转移方程推出对应 base case
            dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
            //   dp[i][1] 
            // = max(dp[i-1][1], dp[-1][0] - prices[i])
            // = max(dp[i-1][1], 0 - prices[i])
            // = max(dp[i-1][1], -prices[i])
            continue;
        }
        dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
        dp[i][1] = Math.max(dp[i-1][1], dp[i-2][0] - prices[i]);
    }
    return dp[n - 1][0];
}

// 空间复杂度优化版本
int maxProfit_with_cool(int[] prices) {
    int n = prices.length;
    int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
    int dp_pre_0 = 0; // 代表 dp[i-2][0]
    for (int i = 0; i < n; i++) {
        int temp = dp_i_0;
        dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
        dp_i_1 = Math.max(dp_i_1, dp_pre_0 - prices[i]);
        dp_pre_0 = temp;
    }
    return dp_i_0;
}


第四题,k = +infinity with fee

每次交易要支付手续费,只要把手续费从利润中减去即可。改写方程:

dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i] - fee)
解释:相当于买入股票的价格升高了。
在第一个式子里减也是一样的,相当于卖出股票的价格减小了。

如果直接把

fee

放在第一个式子里减,会有测试用例无法通过,错误原因是整型溢出而不是思路问题。一种解决方案是把代码中的

int

类型都改成

long

类型,避免

int

的整型溢出。

直接翻译成代码,注意状态转移方程改变后 base case 也要做出对应改变:

// 原始版本
int maxProfit_with_fee(int[] prices, int fee) {
    int n = prices.length;
    int[][] dp = new int[n][2];
    for (int i = 0; i < n; i++) {
        if (i - 1 == -1) {
            // base case
            dp[i][0] = 0;
            dp[i][1] = -prices[i] - fee;
            //   dp[i][1]
            // = max(dp[i - 1][1], dp[i - 1][0] - prices[i] - fee)
            // = max(dp[-1][1], dp[-1][0] - prices[i] - fee)
            // = max(-inf, 0 - prices[i] - fee)
            // = -prices[i] - fee
            continue;
        }
        dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
        dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i] - fee);
    }
    return dp[n - 1][0];
}

// 空间复杂度优化版本
int maxProfit_with_fee(int[] prices, int fee) {
    int n = prices.length;
    int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
    for (int i = 0; i < n; i++) {
        int temp = dp_i_0;
        dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
        dp_i_1 = Math.max(dp_i_1, temp - prices[i] - fee);
    }
    return dp_i_0;
}


第五题,k = 2


k = 2

和前面题目的情况稍微不同,因为上面的情况都和

k

的关系不太大。要么

k

是正无穷,状态转移和

k

没关系了;要么

k = 1

,跟

k = 0

这个 base case 挨得近,最后也没有存在感。

这道题

k = 2

和后面要讲的

k

是任意正整数的情况中,对

k

的处理就凸显出来了。我们直接写代码,边写边分析原因。

原始的状态转移方程,没有可化简的地方
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])

按照之前的代码,我们可能想当然这样写代码(错误的):

int k = 2;
int[][][] dp = new int[n][k + 1][2];
for (int i = 0; i < n; i++) {
    if (i - 1 == -1) {
        // 处理 base case
        dp[i][k][0] = 0;
        dp[i][k][1] = -prices[i];
        continue;
    }
    dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
    dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
}
return dp[n - 1][k][0];

为什么错误?我这不是照着状态转移方程写的吗?

还记得前面总结的「穷举框架」吗?就是说我们必须穷举所有状态。其实我们之前的解法,都在穷举所有状态,只是之前的题目中

k

都被化简掉了。

比如说第一题,

k = 1

时的代码框架:

int n = prices.length;
int[][] dp = new int[n][2];
for (int i = 0; i < n; i++) {
    dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
    dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
return dp[n - 1][0];

但当

k = 2

时,由于没有消掉

k

的影响,所以必须要对

k

进行穷举:

// 原始版本
int maxProfit_k_2(int[] prices) {
    int max_k = 2, n = prices.length;
    int[][][] dp = new int[n][max_k + 1][2];
    for (int i = 0; i < n; i++) {
        for (int k = max_k; k >= 1; k--) {
            if (i - 1 == -1) {
                // 处理 base case
                dp[i][k][0] = 0;
                dp[i][k][1] = -prices[i];
                continue;
            }
            dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
            dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
        }
    }
    // 穷举了 n × max_k × 2 个状态,正确。
    return dp[n - 1][max_k][0];
}


PS:这里肯定会有读者疑惑,

k

的 base case 是 0,按理说应该从

k = 1, k++

这样穷举状态

k

才对?而且如果你真的这样从小到大遍历

k

,提交发现也是可以的

这个疑问很正确,因为我们前文

动态规划答疑篇

有介绍

dp

数组的遍历顺序是怎么确定的,主要是根据 base case,以 base case 为起点,逐步向结果靠近。

但为什么我从大到小遍历

k

也可以正确提交呢?因为你注意看,

dp[i][k]

不会依赖

dp[i][k - 1]

,而是依赖

dp[i - 1][k - 1]

,对于

dp[i - 1][...]

,都是已经计算出来的。所以不管你是

k = max_k, k--

,还是

k = 1, k++

,都是可以得出正确答案的。

那为什么我使用

k = max_k, k--

的方式呢?因为这样符合语义。

你买股票,初始的「状态」是什么?应该是从第 0 天开始,而且还没有进行过买卖,所以最大交易次数限制

k

应该是

max_k

;而随着「状态」的推移,你会进行交易,那么交易次数上限

k

应该不断减少,这样一想,

k = max_k, k--

的方式是比较合乎实际场景的。

当然,这里

k

取值范围比较小,所以可以不用 for 循环,直接把 k = 1 和 2 的情况全部列举出来也可以:

// 状态转移方程:
// dp[i][2][0] = max(dp[i-1][2][0], dp[i-1][2][1] + prices[i])
// dp[i][2][1] = max(dp[i-1][2][1], dp[i-1][1][0] - prices[i])
// dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
// dp[i][1][1] = max(dp[i-1][1][1], -prices[i])

// 空间复杂度优化版本
int maxProfit_k_2(int[] prices) {
    // base case
    int dp_i10 = 0, dp_i11 = Integer.MIN_VALUE;
    int dp_i20 = 0, dp_i21 = Integer.MIN_VALUE;
    for (int price : prices) {
        dp_i20 = Math.max(dp_i20, dp_i21 + price);
        dp_i21 = Math.max(dp_i21, dp_i10 - price);
        dp_i10 = Math.max(dp_i10, dp_i11 + price);
        dp_i11 = Math.max(dp_i11, -price);
    }
    return dp_i20;
}

有状态转移方程和含义明确的变量名指导,相信你很容易看懂。其实我们可以故弄玄虚,把上述四个变量换成

a, b, c, d

。这样当别人看到你的代码时就会大惊失色,对你肃然起敬。


第六题,k = any integer

有了上一题

k = 2

的铺垫,这题应该和上一题的第一个解法没啥区别。但是出现了一个超内存的错误,原来是传入的

k

值会非常大,

dp

数组太大了。现在想想,交易次数

k

最多有多大呢?

一次交易由买入和卖出构成,至少需要两天。所以说有效的限制

k

应该不超过

n/2

,如果超过,就没有约束作用了,相当于

k = +infinity

。这种情况是之前解决过的。

直接把之前的代码重用:

int maxProfit_k_any(int max_k, int[] prices) {
    int n = prices.length;
    if (n <= 0) {
        return 0;
    }
    if (max_k > n / 2) {
        // 交易次数 k 没有限制的情况
        return maxProfit_k_inf(prices);
    }

    // base case:
    // dp[-1][...][0] = dp[...][0][0] = 0
    // dp[-1][...][1] = dp[...][0][1] = -infinity
    int[][][] dp = new int[n][max_k + 1][2];
    // k = 0 时的 base case
    for (int i = 0; i < n; i++) {
        dp[i][0][1] = Integer.MIN_VALUE;
        dp[i][0][0] = 0;
    }

    for (int i = 0; i < n; i++) 
        for (int k = max_k; k >= 1; k--) {
            if (i - 1 == -1) {
                // 处理 i = -1 时的 base case
                dp[i][k][0] = 0;
                dp[i][k][1] = -prices[i];
                continue;
            }
            dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
            dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);     
        }
    return dp[n - 1][max_k][0];
}

至此,6 道题目通过一个状态转移方程全部解决。


四、最后总结

本文给大家讲了如何通过状态转移的方法解决复杂的问题,用一个状态转移方程秒杀了 6 道股票买卖问题,现在想想,其实也不算难对吧?这已经属于动态规划问题中较困难的了。

关键就在于列举出所有可能的「状态」,然后想想怎么穷举更新这些「状态」。一般用一个多维

dp

数组储存这些状态,从 base case 开始向后推进,推进到最后的状态,就是我们想要的答案。想想这个过程,你是不是有点理解「动态规划」这个名词的意义了呢?

具体到股票买卖问题,我们发现了三个状态,使用了一个三维数组,无非还是穷举 + 更新,不过我们可以说的高大上一点,这叫「三维 DP」,怕不怕?

这个大实话一说,立刻显得你高人一等,名利双收有没有,所以给个在看/分享吧,鼓励一下我。

_____________

最后,没关注我视频号的读者赶紧关注下,每周末有空直播:

2b16ab992c957dc54ccddb944fb60289.png



版权声明:本文为fdl123456原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。