统计学习方法 第七章习题答案

  • Post author:
  • Post category:其他




习题7.1


题目:


比较感知机的对偶形式与线性可分支持向量机的对偶形式.


解答:



感知机:


原始形式




min

w

,

b

L

(

w

,

b

)

=

i

=

1

N

[

y

i

(

w

x

i

+

b

)

]

+

\min _{w, b} L(w, b)=\sum_{i=1}^{N}\left[-y_{i}\left(w \cdot x_{i}+b\right)\right]_{+}







min











w


,


b





















L


(


w


,




b


)




=





















i


=


1










N























[






y











i






















(


w










x











i





















+




b


)



]












+























对偶形式




min

w

,

b

L

(

w

,

b

)

=

min

α

i

L

(

α

i

)

=

i

=

1

N

(

y

i

(

j

=

1

N

α

j

y

j

x

j

x

i

+

j

=

1

N

α

j

y

j

)

)

\min _{w, b} L(w, b)=\min _{\alpha_{i}} L\left(\alpha_{i}\right)=\sum_{i=1}^{N}\left(-y_{i}\left(\sum_{j=1}^{N} \alpha_{j} y_{j} x_{j} \cdot x_{i}+\sum_{j=1}^{N} \alpha_{j} y_{j}\right)\right)







min











w


,


b





















L


(


w


,




b


)




=









min












α











i






































L





(



α











i



















)





=





















i


=


1










N























(







y











i























(
















j


=


1










N






















α











j




















y











j




















x











j



























x











i





















+

















j


=


1










N






















α











j




















y











j




















)





)








由对偶形式可以求到



w

,

b

w,b






w


,




b









w

=

i

=

1

N

α

i

y

i

x

i

,

b

=

i

=

1

N

α

i

y

i

w=\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i,} \\b=\sum_{i=1}^{N} \alpha_{i} y_{i}






w




=





















i


=


1










N






















α











i




















y











i




















x











i


,

























b




=





















i


=


1










N






















α











i




















y











i
























线性可分支持向量机:


原始形式:




min

w

,

b

1

2

w

2

 s.t. 

y

i

(

w

x

i

+

b

)

1

0

,

i

=

1

,

2

,


,

N

\begin{array}{ll}\min _{w, b} & \frac{1}{2}\|w\|^{2} \\ \text { s.t. } & y_{i}\left(w \cdot x_{i}+b\right)-1 \geqslant 0, \quad i=1,2, \cdots, N\end{array}



















min











w


,


b


























s.t.










































2
















1
























w















2

















y











i






















(


w










x











i





















+




b


)










1









0


,






i




=




1


,




2


,











,




N

























对偶形式:




min

α

1

2

i

=

1

N

j

=

1

N

α

i

α

j

y

i

y

j

(

x

i

x

j

)

i

=

1

N

α

i

 s.t. 

i

=

1

N

α

i

y

i

=

0

α

i

0

,

i

=

1

,

2

,


,

N

\begin{array}{cl}\min _{\alpha} & \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i} \cdot x_{j}\right)-\sum_{i=1}^{N} \alpha_{i} \\ \text { s.t. } & \sum_{i=1}^{N} \alpha_{i} y_{i}=0 \\ & \alpha_{i} \geqslant 0, \quad i=1,2, \cdots, N\end{array}



















min











α


























s.t.
















































2
















1




































i


=


1










N


































j


=


1










N






















α











i




















α











j




















y











i




















y











j






















(



x











i



























x











j



















)























i


=


1










N






















α











i






































i


=


1










N






















α











i




















y











i





















=




0









α











i


























0


,






i




=




1


,




2


,











,




N

























由对偶形式可以求到



w

,

b

w,b






w


,




b









w

=

i

=

1

N

α

i

y

i

x

i

w^{*}=\sum_{i=1}^{N} \alpha_{i}^{*} y_{i} x_{i}







w
























=





















i


=


1










N






















α











i































y











i




















x











i


























b

=

y

j

i

=

1

N

α

i

y

i

(

x

i

x

j

)

b^{*}=y_{j}-\sum_{i=1}^{N} \alpha_{i}^{*} y_{i}\left(x_{i} \cdot x_{j}\right)







b
























=









y











j











































i


=


1










N






















α











i































y











i






















(



x











i



























x











j



















)







习题7.2


题目:


已知正例点



x

1

=

(

1

,

2

)

T

,

x

2

=

(

2

,

3

)

T

,

x

3

=

(

3

,

3

)

T

x_1=(1,2)^{T}, x_2=(2,3)^{T}, x_3=(3,3)^{T}







x










1




















=








(


1


,




2



)











T










,





x










2




















=








(


2


,




3



)











T










,





x










3




















=








(


3


,




3



)











T













,负例点



x

4

=

(

2

,

1

)

T

,

x

5

=

(

3

,

2

)

T

x_4=(2,1)^{T}, x_5=(3,2)^{T}







x










4




















=








(


2


,




1



)











T










,





x










5




















=








(


3


,




2



)











T













,试求最大间隔分离超平面和分类决策函数,并在图上画出分离超平面、间隔边界及支持向量.


解答:


原始形式




min

1

2

w

1

2

+

w

2

2

\min \frac{1}{2}\left\|w_{1}^{2}+w_{2}^{2}\right\|






min
















2
















1






























































w











1










2





















+





w











2










2





























































s.t.



w

1

+

2

w

2

+

b

1…

(

1

)

\quad w_{1}+2 w_{2}+b \geq 1…(1)









w











1





















+








2



w











2





















+








b













1


.


.


.


(


1


)









2

w

1

+

3

w

2

+

b

1…

(

2

)

2 w_{1}+3 w_{2}+b \geq 1…(2)






2



w











1





















+








3



w











2





















+








b













1


.


.


.


(


2


)









3

w

1

+

3

w

2

+

b

1…

(

3

)

3 w_{1}+3 w_{2}+b \geq 1…(3)






3



w











1





















+








3



w











2





















+








b













1


.


.


.


(


3


)









2

w

1

w

2

b

1…

(

4

)

-2 w_{1}-w_{2}-b \geq 1…(4)









2



w











1































w











2






























b













1


.


.


.


(


4


)









3

w

1

2

w

2

b

1…

(

5

)

-3 w_{1}-2 w_{2}-b \geq 1…(5)









3



w











1






























2



w











2






























b













1


.


.


.


(


5


)






化简一下有




(

1

)

+

(

4

)

:

w

1

+

w

2

2

(1)+(4): -w_{1}+w_{2} \geq 2






(


1


)




+








(


4


)




:












w











1





















+









w











2






























2









(

1

)

+

(

5

)

:

2

w

1

2

(1)+(5): -2w_{1} \geq 2






(


1


)




+








(


5


)




:











2



w











1






























2









(

2

)

+

(

4

)

:

2

w

2

2

(2)+(4): 2w_{2}\geq 2






(


2


)




+








(


4


)




:








2



w











2






























2









(

3

)

+

(

4

)

:

w

1

+

2

w

2

2

(3)+(4): w_{1}+2w_{2} \geq 2






(


3


)




+








(


4


)




:









w











1





















+








2



w











2






























2









(

3

)

+

(

5

)

:

w

2

2

(3)+(5): w_{2} \geq 2






(


3


)




+








(


5


)




:









w











2






























2






得到的5个方程,使用高中知识数学规划,画一下关于



w

1

,

w

2

w_{1},w_{2}







w











1



















,





w











2






















坐标系,发现



w

1

2

+

w

2

2

w_{1}^{2}+w_{2}^{2}







w











1










2





















+









w











2










2






















最小是在



w

1

=

1

,

w

2

=

2

w_{1}=-1, w_{2} = 2







w











1





















=











1


,





w











2





















=








2






将这个值带入原来的(1)-(5)方程,可以得到



b

=

2

b = -2






b




=











2






(图就不画了(✺ω✺))



习题7.3


题目:


线性支持向量机还可以定义为以下形式:




min

w

,

b

,

ξ

1

2

w

2

+

C

i

=

1

N

ξ

i

2

 s.t. 

y

i

(

w

x

i

+

b

)

1

ξ

i

,

i

=

1

,

2

,


,

N

ξ

i

0

,

i

=

1

,

2

,


,

N

\begin{array}{ll}\min _{w, b, \xi} & \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{N} \xi_{i}^{2} \\ \text { s.t. } & y_{i}\left(w \cdot x_{i}+b\right) \geqslant 1-\xi_{i}, \quad i=1,2, \cdots, N \\ & \xi_{i} \geqslant 0, \quad i=1,2, \cdots, N\end{array}



















min











w


,


b


,


ξ


























s.t.
















































2
















1
























w















2












+




C

















i


=


1










N






















ξ











i










2


























y











i






















(


w










x











i





















+




b


)










1










ξ











i



















,






i




=




1


,




2


,











,




N









ξ











i


























0


,






i




=




1


,




2


,











,




N

























试求其对偶形式.


解答:


与课本110页的推导类似

这个形式的拉格朗日函数为




L

(

w

,

b

,

ξ

,

α

,

μ

)

1

2

w

2

+

C

i

=

1

N

ξ

i

2

i

=

1

N

α

i

(

y

i

(

w

x

i

+

b

)

1

+

ξ

i

)

i

=

1

N

μ

i

ξ

i

L(w, b, \xi, \alpha, \mu) \equiv \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{N} \xi_{i}^2-\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(w \cdot x_{i}+b\right)-1+\xi_{i}\right)-\sum_{i=1}^{N} \mu_{i} \xi_{i}






L


(


w


,




b


,




ξ


,




α


,




μ


)

























2
















1
























w















2












+








C

















i


=


1










N






















ξ











i









2










































i


=


1










N






















α











i






















(



y











i






















(


w










x











i





















+




b


)










1




+





ξ











i



















)



























i


=


1










N






















μ











i




















ξ











i























其中




α

i

0

,

μ

i

0

\alpha_{i} \geqslant 0, \mu_{i} \geqslant 0







α











i






























0


,





μ











i






























0






首先求



L

(

w

,

b

,

ξ

,

α

,

μ

)

L(w, b, \xi, \alpha, \mu)






L


(


w


,




b


,




ξ


,




α


,




μ


)









w

,

b

,

ξ

w, b, \xi






w


,




b


,




ξ





的极小




w

L

(

w

,

b

,

ξ

,

α

,

μ

)

=

w

i

=

1

N

α

i

y

i

x

i

=

0

\nabla_{w} L(w, b, \xi, \alpha, \mu)=w-\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}=0



















w



















L


(


w


,




b


,




ξ


,




α


,




μ


)




=








w


























i


=


1










N






















α











i




















y











i




















x











i





















=








0









b

L

(

w

,

b

,

ξ

,

α

,

μ

)

=

i

=

1

N

α

i

y

i

=

0

\nabla_{b} L(w, b, \xi, \alpha, \mu)=-\sum_{i=1}^{N} \alpha_{i} y_{i}=0



















b



















L


(


w


,




b


,




ξ


,




α


,




μ


)




=


























i


=


1










N






















α











i




















y











i





















=








0









ξ

i

L

(

w

,

b

,

ξ

,

α

,

μ

)

=

2

C

ξ

i

α

i

μ

i

=

0

\nabla_{\xi_{i}} L(w, b, \xi, \alpha, \mu)=2C\xi_{i}-\alpha_{i}-\mu_{i}=0




















ξ











i




































L


(


w


,




b


,




ξ


,




α


,




μ


)




=








2


C



ξ











i































α











i































μ











i





















=








0






得到:




w

=

i

=

1

N

α

i

y

i

x

i

w=\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}






w




=





















i


=


1










N






















α











i




















y











i




















x











i


























i

=

1

N

α

i

y

i

=

0

\sum_{i=1}^{N} \alpha_{i} y_{i}=0



















i


=


1










N






















α











i




















y











i





















=








0









2

C

ξ

i

α

i

μ

i

=

0

2C\xi_{i}-\alpha_{i}-\mu_{i}=0






2


C



ξ











i































α











i































μ











i





















=








0






带入原式




min

w

,

b

,

ξ

L

(

w

,

b

,

ξ

,

α

,

μ

)

=

1

2

i

=

1

N

j

=

1

N

α

i

α

j

y

i

y

j

(

x

i

x

j

)

+

i

=

1

N

α

i

C

i

=

1

N

ξ

i

2

=

1

2

i

=

1

N

j

=

1

N

α

i

α

j

y

i

y

j

(

x

i

x

j

)

+

i

=

1

N

α

i

C

i

=

1

N

(

α

i

+

μ

i

2

C

)

2

=

1

2

i

=

1

N

j

=

1

N

α

i

α

j

y

i

y

j

(

x

i

x

j

)

+

i

=

1

N

α

i

1

4

C

i

=

1

N

(

α

i

+

μ

i

)

2

\min _{w, b, \xi} L(w, b, \xi, \alpha, \mu)\\=-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i} \cdot x_{j}\right)+\sum_{i=1}^{N} \alpha_{i}-C \sum_{i=1}^{N} \xi_{i}^2\\=-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i} \cdot x_{j}\right)+\sum_{i=1}^{N} \alpha_{i}-C \sum_{i=1}^{N} (\frac{\alpha_i+\mu_i}{2C})^2\\=-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i} \cdot x_{j}\right)+\sum_{i=1}^{N} \alpha_{i}-\frac{1}{4C}\sum_{i=1}^{N} (\alpha_i+\mu_i)^2







min











w


,


b


,


ξ





















L


(


w


,




b


,




ξ


,




α


,




μ


)










=























2
















1




































i


=


1










N


































j


=


1










N






















α











i




















α











j




















y











i




















y











j






















(



x











i



























x











j



















)





+





















i


=


1










N






















α











i






























C

















i


=


1










N






















ξ











i









2


























=























2
















1




































i


=


1










N


































j


=


1










N






















α











i




















α











j




















y











i




















y











j






















(



x











i



























x











j



















)





+





















i


=


1










N






















α











i






























C

















i


=


1










N



















(














2


C

















α










i


















+



μ










i






































)










2

















=























2
















1




































i


=


1










N


































j


=


1










N






















α











i




















α











j




















y











i




















y











j






















(



x











i



























x











j



















)





+





















i


=


1










N






















α











i










































4


C
















1




































i


=


1










N



















(



α










i




















+









μ










i



















)










2













再对



min

w

,

b

,

ξ

L

(

w

,

b

,

ξ

,

α

,

μ

)

\min _{w, b, \xi} L(w, b, \xi, \alpha, \mu)







min











w


,


b


,


ξ





















L


(


w


,




b


,




ξ


,




α


,




μ


)









α

\alpha






α





的极大,得对偶问题




m

a

x

α

1

2

i

=

1

N

j

=

1

N

α

i

α

j

y

i

y

j

(

x

i

x

j

)

+

i

=

1

N

α

i

1

4

C

i

=

1

N

(

α

i

+

μ

i

)

2

max_\alpha \quad -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i} \cdot x_{j}\right)+\sum_{i=1}^{N} \alpha_{i}-\frac{1}{4C}\sum_{i=1}^{N} (\alpha_i+\mu_i)^2






m


a



x










α











































2
















1




































i


=


1










N


































j


=


1










N






















α











i




















α











j




















y











i




















y











j






















(



x











i



























x











j



















)





+





















i


=


1










N






















α











i










































4


C
















1




































i


=


1










N



















(



α










i




















+









μ










i



















)










2
















s

.

t

i

=

1

N

α

i

y

i

=

0

s.t\sum_{i=1}^{N} \alpha_{i} y_{i}=0






s


.


t

















i


=


1










N






















α











i




















y











i





















=








0









α

i

,

μ

i

>

0

i

=

1

,

2…

N

\alpha_{i}, \mu_{i} > 0\qquad i=1,2…N







α











i



















,





μ











i





















>








0




i




=








1


,




2


.


.


.


N






习题7.4


题目:


证明内积的正整数幂函数:




K

(

x

,

z

)

=

(

x

z

)

p

K(x, z)=(x \cdot z)^{p}






K


(


x


,




z


)




=








(


x













z



)











p














是正定核函数,这里



p

p






p





是正整数,



x

,

z

ϵ

R

n

x,z\epsilon R_{n}






x


,




z


ϵ



R











n
























解答:


要证明



K

(

x

,

z

)

K(x,z)






K


(


x


,




z


)





为正定核,有两种想法,一种是证明根据公式(7.26),证明



K

(

x

,

z

)

K(x,z)






K


(


x


,




z


)





满足



K

(

x

,

z

)

=

ϕ

(

x

)

ϕ

(

z

)

K(x,z)=\phi(x)\cdot \phi(z)






K


(


x


,




z


)




=








ϕ


(


x


)













ϕ


(


z


)





一种是根据定理7.5,证明对任意



x

i

ϵ

X

,

i

=

1

,

2…

m

,

K

(

x

,

z

)

x_i\epsilon X, i=1,2…m, K(x,z)







x










i


















ϵ


X


,




i




=








1


,




2


.


.


.


m


,




K


(


x


,




z


)





对应的



G

r

a

m

Gram






G


r


a


m





矩阵



K

=

[

K

(

x

i

,

x

j

)

]

m

m

K = [K(x_i, x_j)]_{m*m}






K




=








[


K


(



x










i


















,





x










j


















)



]











m





m






















为半正定矩阵。

我用数学归纳法证明



K

(

x

,

z

)

=

ϕ

(

x

)

ϕ

(

z

)

K(x,z)=\phi(x)\cdot \phi(z)






K


(


x


,




z


)




=








ϕ


(


x


)













ϕ


(


z


)






(1)



p

=

1

p=1






p




=








1









K

(

x

,

z

)

=

x

z

K(x,z)=x\cdot z






K


(


x


,




z


)




=








x













z





,取



ϕ

1

(

x

)

=

x

\phi_1(x)=x







ϕ










1


















(


x


)




=








x





,满足条件

(2)假设



p

=

k

p=k






p




=








k





时,



K

(

x

,

z

)

K(x,z)






K


(


x


,




z


)





为正定核,即有



K

(

x

,

z

)

=

ϕ

k

(

x

)

ϕ

k

(

z

)

K(x,z)=\phi_k(x)\cdot \phi_k(z)






K


(


x


,




z


)




=









ϕ










k


















(


x


)














ϕ










k


















(


z


)




(3)那么当



p

=

k

+

1

p=k+1






p




=








k




+








1










K

(

x

,

z

)

=

(

x

z

)

k

(

x

z

)

=

ϕ

k

(

x

)

ϕ

k

(

z

)

(

x

z

)

K(x,z) \\= (x\cdot z)^{k}(x\cdot z)\\=\phi_k(x)\cdot \phi_k(z)(x\cdot z)






K


(


x


,




z


)










=








(


x













z



)











k










(


x













z


)










=









ϕ










k


















(


x


)














ϕ










k


















(


z


)


(


x













z


)






现在假设



ϕ

k

(

x

)

=

(

f

1

(

x

)

,

f

2

(

x

)

.

.

.

,

f

m

(

x

)

)

T

,

x

=

(

x

1

,

x

2

.

.

.

x

n

)

,

z

=

(

z

1

,

z

2

.

.

.

z

n

)

T

\phi_k(x)=(f_1(x),f_2(x)…,f_m(x))^T,x=(x_1,x_2…x_n),z=(z_1,z_2…z_n)^T







ϕ










k


















(


x


)




=








(



f










1


















(


x


)


,





f










2


















(


x


)


.


.


.


,





f










m


















(


x


)



)










T









,




x




=








(



x










1


















,





x










2


















.


.


.



x










n


















)


,




z




=








(



z










1


















,





z










2


















.


.


.



z










n



















)










T













则有




K

(

x

,

z

)

=

(

f

1

(

x

)

f

1

(

z

)

+

f

2

(

x

)

f

2

(

z

)

+

.

.

.

+

f

m

(

x

)

f

m

(

z

)

)

(

x

1

z

1

+

x

2

z

2

+

.

.

.

+

x

n

z

n

)

=

f

1

(

x

)

f

1

(

z

)

(

x

1

z

1

+

x

2

z

2

+

.

.

.

+

x

n

z

n

)

+

f

2

(

x

)

f

2

(

z

)

(

x

1

z

1

+

x

2

z

2

+

.

.

.

+

x

n

z

n

)

+

.

.

.

+

f

m

(

x

)

f

m

(

z

)

(

x

1

z

1

+

x

2

z

2

+

.

.

.

+

x

n

z

n

)

K(x,z)\\=(f_1(x)f_1(z)+f_2(x)f_2(z)+…+f_m(x)f_m(z))(x_1z_1+x_2z_2+…+x_nz_n)\\=f_1(x)f_1(z)(x_1z_1+x_2z_2+…+x_nz_n)+f_2(x)f_2(z)(x_1z_1+x_2z_2+…+x_nz_n)+…+f_m(x)f_m(z)(x_1z_1+x_2z_2+…+x_nz_n)






K


(


x


,




z


)










=








(



f










1


















(


x


)



f










1


















(


z


)




+









f










2


















(


x


)



f










2


















(


z


)




+








.


.


.




+









f










m


















(


x


)



f










m


















(


z


)


)


(



x










1



















z










1




















+









x










2



















z










2




















+








.


.


.




+









x










n



















z










n


















)










=









f










1


















(


x


)



f










1


















(


z


)


(



x










1



















z










1




















+









x










2



















z










2




















+








.


.


.




+









x










n



















z










n


















)




+









f










2


















(


x


)



f










2


















(


z


)


(



x










1



















z










1




















+









x










2



















z










2




















+








.


.


.




+









x










n



















z










n


















)




+








.


.


.




+









f










m


















(


x


)



f










m


















(


z


)


(



x










1



















z










1




















+









x










2



















z










2




















+








.


.


.




+









x










n



















z










n


















)






那么我们就可以取




ϕ

k

+

1

(

x

)

=

(

f

1

(

x

)

x

1

,

f

1

(

x

)

x

2

.

.

.

f

1

(

x

)

x

n

,

f

2

(

x

)

x

1

,

f

2

(

x

)

x

2

,

.

.

.

,

f

2

(

x

)

x

n

,

.

.

.

.

.

.

f

m

(

x

)

x

1

,

f

m

(

x

)

x

2

,

.

.

.

f

m

(

x

)

x

n

)

T

\phi_{k+1}(x)=(f_1(x)x_1, f_1(x)x_2…f_1(x)x_n,f_2(x)x_1,f_2(x)x_2,…,f_2(x)x_n,……f_m(x)x_1,f_m(x)x_2,…f_m(x)x_n)^T







ϕ











k


+


1



















(


x


)




=








(



f










1


















(


x


)



x










1


















,





f










1


















(


x


)



x










2


















.


.


.



f










1


















(


x


)



x










n


















,





f










2


















(


x


)



x










1


















,





f










2


















(


x


)



x










2


















,




.


.


.


,





f










2


















(


x


)



x










n


















,




.


.


.


.


.


.



f










m


















(


x


)



x










1


















,





f










m


















(


x


)



x










2


















,




.


.


.



f










m


















(


x


)



x










n



















)










T

















K

(

x

,

z

)

=

(

x

z

)

k

+

1

=

ϕ

k

+

1

(

x

)

ϕ

k

+

1

(

z

)

K(x,z) = (x\cdot z)^{k+1}=\phi_{k+1}(x)\cdot \phi_{k+1}(z)






K


(


x


,




z


)




=








(


x













z



)











k


+


1












=









ϕ











k


+


1



















(


x


)














ϕ











k


+


1



















(


z


)







得证


贴一个先前用半正定矩阵证明的方法,不过这个解法有点问题(关于用证明矩阵半正定的证明方法,有读者有好的想法可以在评论区一起讨论)

根据定理7.5,正定核函数的充要条件是对任意



x

i

ϵ

X

,

i

=

1

,

2…

m

,

K

(

x

,

z

)

x_i\epsilon X, i=1,2…m, K(x,z)







x










i


















ϵ


X


,




i




=








1


,




2


.


.


.


m


,




K


(


x


,




z


)





对应的



G

r

a

m

Gram






G


r


a


m





矩阵



K

=

[

K

(

x

i

,

x

j

)

]

m

m

K = [K(x_i, x_j)]_{m*m}






K




=








[


K


(



x










i


















,





x










j


















)



]











m





m






















为半正定矩阵

对任意



c

1

,

c

2

,

.

.

.

,

c

m

ϵ

R

c_1,c_2,…,c_m\epsilon R







c










1


















,





c










2


















,




.


.


.


,





c










m


















ϵ


R









i

,

j

=

1

m

c

i

c

j

K

(

x

i

,

x

j

)

=

i

,

j

=

1

m

c

i

c

j

(

x

i

x

j

)

p

=

i

=

1

m

(

c

i

x

i

c

j

x

j

)

(

x

i

x

j

)

p

1

\sum^m_{i,j=1}c_{i}c_jK(x_{i},x_j)\\=\sum^m_{i,j=1}c_{i}c_j(x_i\cdot x_j)^p\\=\sum^m_{i=1}(c_ix_i\cdot c_jx_j)(x_{i}\cdot x_{j})^{p-1}



















i


,


j


=


1









m





















c











i




















c










j


















K


(



x











i



















,





x










j


















)










=





















i


,


j


=


1









m





















c











i




















c










j


















(



x










i






























x










j



















)










p

















=





















i


=


1









m


















(



c










i



















x










i






























c










j



















x










j


















)


(



x











i































x











j




















)











p





1














先来看前面一部分



(

c

i

x

i

c

j

x

j

)

(c_ix_i\cdot c_jx_j)






(



c










i



















x










i






























c










j



















x










j


















)









i

=

1

m

(

c

i

x

i

c

j

x

j

)

=

(

i

=

1

m

c

i

x

i

)

(

j

=

1

m

c

j

x

j

)

=

i

=

1

m

c

i

x

i

2

0

\sum^m_{i=1}(c_ix_i\cdot c_jx_j)\\=(\sum^m_{i=1}c_ix_i)\cdot (\sum^m_{j=1}c_jx_j)\\=||\sum^m_{i=1}c_ix_i||^2\geq 0



















i


=


1









m


















(



c










i



















x










i






























c










j



















x










j


















)










=








(















i


=


1









m





















c










i



















x










i


















)













(















j


=


1









m





















c










j



















x










j


















)










=





























i


=


1









m





















c










i



















x










i

































2




















0






再看后面一部分



(

x

i

x

j

)

p

1

p

0

(x_{i}\cdot x_{j})^{p-1}\quad p\geq 0






(



x











i































x











j




















)











p





1












p













0






对于




i

=

1

m

(

x

i

x

j

)

=

(

i

=

1

m

x

i

)

(

i

=

1

m

x

i

)

=

i

=

1

m

x

i

2

0

\sum^m_{i=1}(x_{i}\cdot x_{j})\\=(\sum^m_{i=1}x_{i})\cdot (\sum^m_{i=1}x_{i})\\=||\sum^m_{i=1}x_{i}||^2\quad \geq 0



















i


=


1









m


















(



x











i































x











j



















)










=








(















i


=


1









m





















x











i



















)













(















i


=


1









m





















x











i



















)










=





























i


=


1









m





















x











i


































2






















0






而对于




i

=

1

m

a

i

b

i

s

.

t

i

=

1

m

a

i

,

i

=

1

m

b

i

0

\sum_{i=1}^ma_ib_i\\s.t\sum^m_{i=1}a_i,\sum^m_{i=1}b_i\quad \geq0



















i


=


1









m





















a










i



















b










i
























s


.


t

















i


=


1









m





















a










i


















,

















i


=


1









m





















b










i































0






一定有



i

=

1

m

a

i

b

i

0

\sum_{i=1}^ma_ib_i\geq0



















i


=


1









m





















a










i



















b










i





























0






所以有



i

=

1

m

(

c

i

x

i

c

j

x

j

)

(

x

i

x

j

)

p

1

0

\sum^m_{i=1}(c_ix_i\cdot c_jx_j)(x_{i}\cdot x_{j})^{p-1}\geq0



















i


=


1









m


















(



c










i



















x










i






























c










j



















x










j


















)


(



x











i































x











j




















)











p





1





















0






版权声明:本文为qq_41562704原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。