组合数学$4 递推关系与生成函数

  • Post author:
  • Post category:其他




C4 递推关系与生成函数



S0 斐波那契数列

1)递推公式:



f

n

+

2

=

f

n

+

1

+

f

n

,

f

0

=

0

,

f

1

=

1

f_{n+2} = f_{n+1}+f_n,f_0 = 0,f_1 = 1







f











n


+


2





















=









f











n


+


1





















+









f










n


















,





f










0




















=








0


,





f










1




















=








1




2)通项公式:



f

n

=

1

5

[

(

1

+

5

2

)

n

(

1

5

2

)

n

]

f_n = \frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^n – (\frac{1-\sqrt{5}}{2})^n]







f










n




















=




























5






































1





















[


(














2
















1


+










5












































)










n




















(














2
















1













5












































)










n









]




3)与二项式系数关系:



f

n

=

k

=

0

n

1

C

n

1

k

k

f_n = \sum\limits_{k=0}^{n-1}C_{n-1-k}^k







f










n




















=

















k


=


0



















n





1





















C











n





1





k









k





















,即 Pascal 三角形从左下到右上每条线的和

4)部分和:



S

n

=

f

n

+

2

1

S_n = f_{n+2}-1







S










n




















=









f











n


+


2






























1






S1 生成函数

1)生成函数:



f

(

x

)

=

k

=

0

a

k

x

k

f(x) = \sum\limits_{k=0}^\infin a_k x^k






f


(


x


)




=

















k


=


0







































a










k



















x










k














  • S

    n

    =

    k

    =

    0

    n

    a

    k

    S_n=\sum\limits_{k=0}^na_k







    S










    n




















    =

















    k


    =


    0


















    n




















    a










    k





















    的生成函数:



    f

    (

    x

    )

    1

    x

    \frac{f(x)}{1-x}


















    1





    x
















    f


    (


    x


    )


























  • k

    k






    k





    元无限多重集



    n

    n






    n





    组合(



    i

    =

    1

    k

    c

    i

    x

    i

    =

    n

    \sum\limits_{i=1}^k c_ix_i = n















    i


    =


    1


















    k




















    c










    i



















    x










    i




















    =








    n





    的非整数解)个数:



    g

    (

    x

    )

    =

    i

    =

    1

    k

    1

    1

    x

    c

    i

    g(x) =\prod\limits_{i=1}^k\frac{1}{1-x^{c_i}}






    g


    (


    x


    )




    =

















    i


    =


    1


















    k































    1






    x












    c









    i







































    1























    解题时有时可化简,如



    (

    1

    +

    x

    1

    +

    x

    1

    2

    +

    +

    x

    1

    n

    )

    =

    (

    1

    x

    1

    n

    +

    1

    )

    /

    (

    1

    x

    1

    )

    (1+x_1+x_1^2+\cdots+x_1^n) = (1-x_1^{n+1})/(1-x_1)






    (


    1




    +









    x










    1




















    +









    x










    1








    2




















    +













    +









    x










    1








    n


















    )




    =








    (


    1














    x










    1









    n


    +


    1



















    )


    /


    (


    1














    x










    1


















    )







  • {

    1

    ,


    ,

    n

    }

    \{1,\cdots,n\}






    {



    1


    ,











    ,




    n


    }





    的逆序数为



    t

    t






    t





    的排列:



    g

    (

    x

    )

    =

    k

    =

    1

    n

    (

    1

    x

    k

    )

    (

    1

    x

    )

    n

    g(x) = \frac{\prod\limits_{k=1}^n(1-x^k)}{(1-x)^n}






    g


    (


    x


    )




    =




















    (


    1





    x



    )










    n
































    k


    =


    1


















    n

















    (


    1






    x










    k









    )























2)指数生成函数:



g

e

(

x

)

=

k

=

0

a

k

x

k

k

!

g_e(x) = \sum\limits_{k=0}^\infin \frac{a_k x^k}{k!}







g










e


















(


x


)




=

















k


=


0


















































k


!

















a










k



















x










k

































  • k

    k






    k





    元无限多重集



    n

    n






    n





    排列:



    g

    e

    (

    x

    )

    =

    i

    =

    1

    k

    f

    i

    (

    x

    )

    ,

    f

    i

    (

    x

    )

    =

    j

    =

    0

    x

    c

    i

    j

    (

    c

    i

    j

    )

    !

    g_e(x) = \prod\limits_{i=1}^k f_{i}(x),f_i(x) = \sum\limits_{j=0}^\infin\frac{x^{c_ij}}{(c_ij)!}







    g










    e


















    (


    x


    )




    =

















    i


    =


    1


















    k




















    f











    i



















    (


    x


    )


    ,





    f










    i


















    (


    x


    )




    =

















    j


    =


    0


















































    (



    c










    i


















    j


    )


    !

















    x












    c









    i

















    j

































S2 递推关系

1)线性递推:



h

n

=

a

1

h

n

1

+

a

2

h

n

2

+

+

a

k

h

n

k

+

a

0

h_n = a_1 h_{n-1} + a_2h_{n-2}+\cdots+ a_kh_{n-k}+a_0







h










n




















=









a










1



















h











n





1





















+









a










2



















h











n





2





















+













+









a










k



















h











n





k





















+









a










0























  • a

    k

    0

    a_k\neq 0







    a










    k























































    =









    0









    a

    i

    =

    f

    (

    n

    )

    a_i =f(n)







    a










    i




















    =








    f


    (


    n


    )




2)常系数齐次线性递推:

  • 齐次递推:



    a

    0

    =

    0

    a_0 = 0







    a










    0




















    =








    0




  • 常系数递推:



    a

    i

    R

    a_i \in \mathbb{R}







    a










    i






























    R





  • 求解:

    • 特征方程法:

      1. 特征方程为:



        x

        k

        =

        a

        1

        x

        k

        1

        +

        +

        a

        k

        x^k = a_1 x^{k-1}+\cdots +a_k







        x










        k











        =









        a










        1



















        x











        k





        1












        +













        +









        a










        k
























      2. k

        k






        k





        个根



        q

        1

        ,


        ,

        q

        k

        q_1,\cdots,q_k







        q










        1


















        ,











        ,





        q










        k





















        ,重数为



        s

        1

        ,


        ,

        s

        k

        s_1,\cdots,s_k







        s










        1


















        ,











        ,





        s










        k




















      3. 解为



        i

        =

        1

        k

        j

        =

        0

        s

        i

        1

        c

        i

        j

        n

        j

        q

        i

        n

        \sum\limits_{i=1}^k\sum\limits_{j=0}^{s_i -1}c_{ij}n^j{q_i}^n















        i


        =


        1


















        k




























        j


        =


        0




















        s










        i





















        1





















        c











        i


        j




















        n










        j












        q










        i



























        n











    • 生成函数法:由



      (

      1

      i

      =

      1

      k

      a

      i

      x

      i

      )

      g

      (

      x

      )

      =

      C

      (1-\sum\limits_{i = 1}^ka_i x ^ i)g(x) =C






      (


      1






















      i


      =


      1


















      k




















      a










      i



















      x










      i









      )


      g


      (


      x


      )




      =








      C





      求得

      • 适用条件:



        (

        1

        i

        =

        1

        k

        a

        i

        x

        i

        )

        g

        (

        x

        )

        =

        g

        (

        x

        )

        q

        (

        x

        )

        =

        p

        (

        x

        )

        (1-\sum\limits_{i = 1}^ka_i x ^ i)g(x) =g(x)q(x) = p(x)






        (


        1






















        i


        =


        1


















        k




















        a










        i



















        x










        i









        )


        g


        (


        x


        )




        =








        g


        (


        x


        )


        q


        (


        x


        )




        =








        p


        (


        x


        )









        p

        (

        x

        )

        p(x)






        p


        (


        x


        )





        是多项式

      • 原理:



        f

        (

        x

        )

        =

        p

        (

        x

        )

        q

        (

        x

        )

        f(x) = \frac{p(x)}{q(x)}






        f


        (


        x


        )




        =




















        q


        (


        x


        )
















        p


        (


        x


        )




























        p

        ,

        q

        p,q






        p


        ,




        q





        为多项式,则其唯一确定一个数列




        p

        (

        x

        )

        =

        d

        0

        +

        d

        1

        x

        +

        +

        d

        k

        1

        x

        k

        1

        p(x) = d_0 + d_1 x + \cdots + d_{k-1}x^{k-1}






        p


        (


        x


        )




        =









        d










        0




















        +









        d










        1


















        x




        +













        +









        d











        k





        1




















        x











        k





        1















        q

        (

        x

        )

        =

        b

        0

        +

        b

        1

        x

        +

        +

        b

        k

        x

        k

        q(x) = b_0 + b_1 x + \cdots + b_k x^k






        q


        (


        x


        )




        =









        b










        0




















        +









        b










        1


















        x




        +













        +









        b










        k



















        x










        k















        d

        0

        +

        d

        1

        x

        +

        +

        d

        k

        1

        x

        k

        1

        =

        (

        b

        0

        +

        b

        1

        x

        +

        +

        b

        k

        x

        k

        )

        k

        =

        0

        h

        k

        x

        k

        d_0 + d_1 x + \cdots + d_{k-1}x^{k-1} = (b_0 + b_1 x + \cdots + b_k x^k)*\sum\limits_{k=0}^\infin h_kx^k







        d










        0




















        +









        d










        1


















        x




        +













        +









        d











        k





        1




















        x











        k





        1












        =








        (



        b










        0




















        +









        b










        1


















        x




        +













        +









        b










        k



















        x










        k









        )






















        k


        =


        0







































        h










        k



















        x










        k











        可得



        h

        n

        +

        b

        1

        b

        0

        h

        n

        1

        +

        +

        b

        k

        b

        0

        h

        n

        k

        =

        0

        h_n+\frac{b_1}{b_0} h_{n-1}+\cdots + \frac{b_k}{b_0}h_{n-k} = 0







        h










        n




















        +





















        b










        0

































        b










        1






































        h











        n





        1





















        +













        +





















        b










        0

































        b










        k






































        h











        n





        k





















        =








        0




      • 与特征方程关系:



        x

        k

        r

        (

        1

        x

        )

        =

        q

        (

        x

        )

        x^kr(\frac{1}{x}) = q(x)







        x










        k









        r


        (














        x
















        1





















        )




        =








        q


        (


        x


        )





        ,即



        q

        (

        x

        )

        q(x)






        q


        (


        x


        )





        的根是



        r

        (

        x

        )

        r(x)






        r


        (


        x


        )





        的根的倒数

3)常系数非齐次线性递推关系

  • 常规解法:

    1. 求对应齐次解
    2. 求一非齐次解(时域经典法)





      • b

        n

        b_n







        b










        n

























        n

        n






        n









        k

        k






        k





        次多项式,设



        h

        n

        h_n







        h










        n

























        k

        k






        k





        次多项式





      • b

        n

        b_n







        b










        n





















        是指数函数



        r

        n

        r^n







        r










        n
















        • r

          r






          r





          不是特征根,设



          h

          n

          =

          c

          r

          n

          h_n= cr^n







          h










          n




















          =








          c



          r










          n















        • r

          r






          r









          k

          k






          k





          重特征根,设



          h

          n

          =

          r

          n

          i

          =

          0

          k

          c

          i

          n

          i

          h_n = r^n\sum\limits_{i=0}^kc_in^i







          h










          n




















          =









          r










          n




















          i


          =


          0


















          k




















          c










          i



















          n










          i















      • b

        n

        =

        p

        (

        n

        )

        r

        n

        b_n = p(n)r^n







        b










        n




















        =








        p


        (


        n


        )



        r










        n
















        r

        r






        r









        m

        m






        m





        重根,



        p

        (

        n

        )

        p(n)






        p


        (


        n


        )









        p

        p






        p





        次多项式,特解为



        r

        n

        [

        c

        0

        n

        m

        +

        +

        c

        p

        n

        m

        +

        p

        ]

        r^n[c_0n^m+\cdots+c_pn^{m+p}]







        r










        n









        [



        c










        0



















        n










        m











        +













        +









        c










        p



















        n











        m


        +


        p










        ]




    3. 通解 = 特解 + 齐次解
  • 生成函数法
  • 观察 + 数学归纳法

4)非线性递推:





  • n

    +

    1

    n+1






    n




    +








    1





    多边形完全分割为多个三角形的分法:



    h

    n

    =

    k

    =

    1

    n

    1

    h

    n

    h

    n

    k

    =

    1

    n

    C

    2

    n

    2

    n

    1

    (

    n

    2

    )

    ,

    h

    1

    =

    h

    2

    =

    1

    h_n = \sum\limits_{k=1}^{n-1}h_nh_{n-k}=\frac{1}{n}C_{2n-2}^{n-1}(n\ge 2),h_1=h_2 = 1







    h










    n




















    =

















    k


    =


    1



















    n





    1





















    h










    n



















    h











    n





    k





















    =




















    n
















    1






















    C











    2


    n





    2










    n





    1



















    (


    n













    2


    )


    ,





    h










    1




















    =









    h










    2




















    =








    1




  • 即卡特兰数
  • 对应生成函数



    g

    (

    x

    )

    2

    =

    g

    (

    x

    )

    x

    g(x)^2 = g(x)- x






    g


    (


    x



    )










    2











    =








    g


    (


    x


    )













    x






版权声明:本文为weixin_42935837原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。