一篇文章教你使用运放实现三角波、方波(详细电路分析)+multisim仿真

  • Post author:
  • Post category:其他


前言

信号发生器是电子工程师最常用的几个仪器之一吧,三角波和方波是最常用的波形,在之前的文章中,我们已经介绍过RC延迟电路,今天我就教大家通过RC延迟和运放来实现三角波和方波。

仿真软件版本

本次介绍的电路是通过multisim软件进行仿真,按照惯例,贴出软件版本,需要的同学通过链接自取↓

034ee7b96aa3cd45ef1ba5b4e39726d7.png

附上multisim 14.0 网盘链接,内附PJ方法

https://pan.baidu.com/s/15NvcyeKIgk-COlvoDIfz0A

提取码: dsmf

目录

e4ee79624c1ac5fdb6bfcec1ffca9fbe.png

1.先看结果

按照惯例,我们先来看一下结果!

13dcb401c206b554b9678a80bcbed32d.png

b18cb98dd3230a4508285dbc29824b19.png

↑电路产生了约500HZ的三角波和占空比为50%的方波(此电路是通过RC电路充电放电产生的三角波,所以并不是十分标准,在对三角波波形没有严格要求的场合下可以使用)。

下面将叙述电路的工作原理,以及各元器件参数对波形产生的影响。

2.波形发生电路原理

从电路图可以看到,此电路使用了两个运放,分别产生了三角波和方波。我们先来搞清楚三角波的发生过程,在三角波发生的原理搞定之后一切就迎刃而解!


2.1三角波发生原理

三角波的产生分为 **上升** 和 **下降** 两部分,如下图所示↓

ef1b56a8fe9af38051f48ede500e2e0d.png


2.1.1.三角波的上升沿(C1的充电过程)

当电路启动时需要短暂的时间电路产生振荡,随后便进入电容充电放电的循环。电容C1的充电通路如下↓

ebabad19388cbb3205689b0b854b7a79.png

1.当刚上电时,由于电路是正反馈网络,且运放输出端不为0,输出端会迅速达到高电平约为13V。

2.运放输出高电平后,通过R4给C1进行充电,根据经验公式:t=3RC时,电容电压Uc=0.95*电源电压U。

R=100K、C1=3.3nF, t=3RC≈1ms。和仿真结果基本一致↓

eb24b8de4958925f5217e9310f3ada3c.png


当我们搞明白电容电压的充电过程后,面临一个重要问题,电压上升到什么时候为止呢?我们来继续分析↓

6ca5cddd38649955c43ffefe1c44f57a.png

当运算放大器输出高电平时,会近似于将输出连接到VCC15V上,所以电阻R3近似与R1并联,那么此时运算放大器的﹢引脚电压由R1//R3 与 R2分压决定,

Vop+= 15*(10/10.5)≈14V。也就是说C1上的电压会上升到14V左右停止。

由于运放LM358P并非轨到轨运放(Rail to Rail)

所以实际输出的高电平会比我们的理论值14V低一些,在仿真的测试结果中约为12V↓


99b259ad77e0f31c984237687e99b70b.png


2.1.2 三角波的下降沿(C1的放电过程)

当C1的充电过程完成后,会产生一个过冲,过冲会导致运算放大器的 U- > U+,运算放大器输出低电平。

我们再来看三角波的下降阶段↓

a5d6093acb1a4502a8b0788ed96df707.png

当运算放大器输出低电平时,输出(运算放大器1脚)近似于接地,则C1通过R4进行放电,这里为了方便计算,我们认为C1的放电时间约等于C1充电放电时间。


同样的,电压下降到什么时候为止呢?我们来继续分析↓


392ba1761b193da1239f6f7686b8b025.png

运算放大器输出低电平时,R3与R2为并联关系,则运算放大器的正极电压由 R1和R2//R3决定,

U+ = 15*(0.5/10.5) ≈ 0.9V。

我们可以看到实际的输出波形,波谷时也会略微高出0V一点点↓

2b4d25e42df6c39ab740990ea974ec4b.png

至此三角波的发生过程已经叙述完毕,下面开始讲解方波的产生(就简单多了,哈哈)


2.2 方波发生原理

方波的产生依靠于三角波和比较器,具体原理如下↓

00e05c36d831be0a2d4027250908157a.png


de0e2a40732dc9880cf0282739117665.png

1.当三角波超出比较器的Vref时,比较器输出低电平;

2.当三角波低于比较器的Vref时,比较器输出高电平;

从而产生方波,我们也自然可以通过调整Vref来调整方波的占空比。


调整占空比后的方波,如下图所示↓


a464f74e53c04ea21d54c7a2bb394654.png


3.器件参数对波形的影响


1.方波的占空比 :

刚才已经提到可以通过调整比较器的Vref来调整方波的占空比,如何调整Vref相信大家都知道,通过调整R5、R6便可以调整Vref。


2.三角波与方波的频率:

我们可以通过调节C1或者R4的值来控制电容C1的充电、放电时间,从而调整波形的频率,我们来试一下(

将R4缩小为50K,那么C1充电、放电的时间均为原先的一半,频率会提升一倍左右

)↓


528f58a4a2c274395fd2aee7eddc5603.png

↑从上图可以看到,基本和理论相差不大,频率提升了一倍。依旧满足经验公式:t=3RC时,电容电压Uc=0.95*电源电压U


注意:

当我们将频率提升至15K左右时,三角波便会出现变形,所以本文中所设计的信号发生器上限频率为

15K左右↓


604747075b402eacf825e158c5f36049.png


3.三角波幅值的偏移量

本文中的原理已经介绍过,在运放输出高低电平时,R3分别与R1、R2并联改变了 第一个运放 的U﹢,那么我们便可以在R1、R2不变的情况下通过改变R3的大小来改变三角波幅值的偏移量(**因为R3改变后,与R1、R2并联后的分压会变化**)

我们来看一下效果↓

f3a7aa2e419035b63816d0d8809f2423.png


↑可以看到三角波的偏置电压发生了改变,但是注意由于也改变了充电、放电时间,所以频率也会改变,这一点要注意!


结束

今天介绍了使用运放如何产生三角波和方波,在实际动手操作时要注意电阻的功率和电容的耐压值、运算放大器的工作电压范围等基本参数。这些内容将会在后面陆续更新的文章介绍。

后续我将每周更新,谢谢大家的关注,也欢迎大家在评论区批评指正。