10.三数之和
给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请
你返回所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
思路:先排序
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> res;
sort(nums.begin(), nums.end());
for (int i = 0; i < nums.size(); i ++ ) {
if (i && nums[i] == nums[i - 1]) continue;
for (int j = i + 1, k = nums.size() - 1; j < k; j ++ ) {
if (i + 1 < j && nums[j] == nums[j - 1]) continue;
while (j < k - 1 && nums[i] + nums[j] + nums[k - 1] >= 0) k -- ;
if (nums[i] + nums[j] + nums[k] == 0) {
res.push_back({nums[i], nums[j], nums[k]});
}
}
}
return res;
}
};
一种运行错误的解法:
Line 1034: Char 34: runtime error: addition of unsigned offset to 0x603000000040 overflowed to 0x60300000003c (stl_vector.h)
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior /usr/bin/../lib/gcc/x86_64-linux-gnu/9/../../../../include/c++/9/bits/stl_vector.h:1043:34
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
int n=nums.size();
vector<vector<int>> res;
sort(nums.begin(),nums.end());
for(int i=0;i<n;i++){
if(nums[i]==nums[i-1]){
continue;
}
for(int j=i+1;j<n;j++){
for(int k=j+1;k<n;k++){
if(nums[i]+nums[j]+nums[k]==0){
res.push_back({nums[i],nums[j],nums[k]});
};
}
}
}
return res;
}
};
11.四数之和
给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为两个四元组重复):
0 <= a, b, c, d < n
a、b、c 和 d 互不相同
nums[a] + nums[b] + nums[c] + nums[d] == target
你可以按 任意顺序 返回答案 。
解法一:超出时间限制的解法
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
for (int k = 0; k < nums.size(); k++) {
if (k > 0 && nums[k] == nums[k - 1]) {
continue;
}
for (int i = k + 1; i < nums.size(); i++) {
// 去重
if (i > k + 1 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
if (nums[k] + nums[i] + nums[left] + nums[right] > target) {
right--;
} else if (nums[k] + nums[i] + nums[left] + nums[right] < target) {
left++;
} else {
result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});
}
}
}
}
return result;
}
};
解法二、未超时间限制
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
for (int k = 0; k < nums.size(); k++) {
// 去重
if (k > 0 && nums[k] == nums[k - 1]) {
continue;
}
for (int i = k + 1; i < nums.size(); i++) {
if (i > k + 1 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
if ((long)nums[k] + nums[i] + nums[left] + nums[right] > target) {
right--;
} else if ((long)nums[k] + nums[i] + nums[left] + nums[right] < target) {
left++;
} else {
result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});
// 去重逻辑应该放在找到一个四元组之后
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
// 找到答案时,双指针同时收缩
right--;
left++;
}
}
}
}
return result;
}
};
解法三、官方解法
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> quadruplets;
if (nums.size() < 4) {
return quadruplets;
}
sort(nums.begin(), nums.end());
int length = nums.size();
for (int i = 0; i < length - 3; i++) {
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
if ((long) nums[i] + nums[i + 1] + nums[i + 2] + nums[i + 3] > target) {
break;
}
if ((long) nums[i] + nums[length - 3] + nums[length - 2] + nums[length - 1] < target) {
continue;
}
for (int j = i + 1; j < length - 2; j++) {
if (j > i + 1 && nums[j] == nums[j - 1]) {
continue;
}
if ((long) nums[i] + nums[j] + nums[j + 1] + nums[j + 2] > target) {
break;
}
if ((long) nums[i] + nums[j] + nums[length - 2] + nums[length - 1] < target) {
continue;
}
int left = j + 1, right = length - 1;
while (left < right) {
long sum = (long) nums[i] + nums[j] + nums[left] + nums[right];
if (sum == target) {
quadruplets.push_back({nums[i], nums[j], nums[left], nums[right]});
while (left < right && nums[left] == nums[left + 1]) {
left++;
}
left++;
while (left < right && nums[right] == nums[right - 1]) {
right--;
}
right--;
} else if (sum < target) {
left++;
} else {
right--;
}
}
}
}
return quadruplets;
}
};
12.搜索旋转排序数组
整数数组 nums 按升序排列,数组中的值 互不相同 。
在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k+1], …, nums[n-1], nums[0], nums[1], …, nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2] 。
给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1 。
你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。
解法一:官方解法,二分查找
class Solution {
public:
int search(vector<int>& nums, int target) {
int n = (int)nums.size();
if (!n) {
return -1;
}
if (n == 1) {
return nums[0] == target ? 0 : -1;
}
int l = 0, r = n - 1;
while (l <= r) {
int mid = (l + r) / 2;
if (nums[mid] == target) return mid;
if (nums[0] <= nums[mid]) {
if (nums[0] <= target && target < nums[mid]) {
r = mid - 1;
} else {
l = mid + 1;
}
} else {
if (nums[mid] < target && target <= nums[n - 1]) {
l = mid + 1;
} else {
r = mid - 1;
}
}
}
return -1;
}
};
解法二、不符合时间复杂度要求,但简单暴力可通过
class Solution {
public:
int search(vector<int>& nums, int target) {
int n = (int)nums.size();
if (!n) {
return -1;
}
if (n == 1) {
return nums[0] == target ? 0 : -1;
}
for(int i=0;i<n;i++){
if(nums[i]==target){
return i;
}
}
return -1;
}
};