引理
-
设总体
XX
X
(不管服从什么分布,只要均值和方差存在)的均值为
μ\mu
μ
,方差为
σ2
\sigma^2
σ
2
,
X1
,
X
2
,
⋯
,
X
n
X_1,X_2,\cdots,X_n
X
1
,
X
2
,
⋯
,
X
n
是来自
XX
X
的一个样本,
X‾
,
S
2
\overline{X},S^2
X
,
S
2
分别是样本均值和样本方差,则有
E(
X
‾
)
=
μ
,
D
(
X
‾
)
=
σ
2
/
n
,
E
(
S
2
)
=
σ
2
E(\overline{X})=\mu,\quad D(\overline{X})=\sigma^2/n, \quad E(S^2)=\sigma^2
E
(
X
)
=
μ
,
D
(
X
)
=
σ
2
/
n
,
E
(
S
2
)
=
σ
2
-
正态分布线性可加性: 若
Xi
∼
N
(
μ
i
,
σ
i
2
)
,
i
=
1
,
2
,
⋯
,
n
X_i\sim N(\mu_i,\sigma_i^2),i=1,2,\cdots,n
X
i
∼
N
(
μ
i
,
σ
i
2
)
,
i
=
1
,
2
,
⋯
,
n
,且他们相互独立,则他们的线性组合:
C1
X
1
+
C
2
X
2
+
⋯
+
C
n
X
n
C_1X_1+C_2X_2+\cdots+C_nX_n
C
1
X
1
+
C
2
X
2
+
⋯
+
C
n
X
n
,(
C1
,
C
2
,
⋯
,
C
n
C_1,C_2,\cdots,C_n
C
1
,
C
2
,
⋯
,
C
n
是不全为
00
0
的常数)仍然服从正态分布,且有
C1
X
1
+
C
2
X
2
+
⋯
+
C
n
X
n
∼
N
(
∑
i
=
1
n
C
i
μ
i
,
∑
i
=
1
n
C
i
2
σ
i
2
)
C_1X_1+C_2X_2+\cdots+C_nX_n\sim N(\sum\limits_{i=1}^nC_i\mu_i,\sum\limits_{i=1}^nC_i^2\sigma_i^2)
C
1
X
1
+
C
2
X
2
+
⋯
+
C
n
X
n
∼
N
(
i
=
1
∑
n
C
i
μ
i
,
i
=
1
∑
n
C
i
2
σ
i
2
)
-
nn
n
维正态随机变量重要性质
10
1^0\quad
1
0
nn
n
维正态随机变量
(X
1
,
X
2
,
⋯
,
X
n
)
(X_1,X_2,\cdots,X_n)
(
X
1
,
X
2
,
⋯
,
X
n
)
的每一个分量
Xi
,
i
=
1
,
2
,
⋯
,
n
X_i,i=1,2,\cdots,n
X
i
,
i
=
1
,
2
,
⋯
,
n
都是正态随机变量,反之,若
X1
,
X
2
,
⋯
,
X
n
X_1,X_2,\cdots,X_n
X
1
,
X
2
,
⋯
,
X
n
都是正态随机变量,且相互独立,则
(X
1
,
X
2
,
⋯
,
X
n
)
(X_1,X_2,\cdots,X_n)
(
X
1
,
X
2
,
⋯
,
X
n
)
是
nn
n
维正态随机变量
20
2^0\quad
2
0
nn
n
维随机变量
(X
1
,
X
2
,
⋯
,
X
n
)
(X_1,X_2,\cdots,X_n)
(
X
1
,
X
2
,
⋯
,
X
n
)
服从
nn
n
维正态分布的充要条件是
X1
,
X
2
,
⋯
,
X
n
X_1,X_2,\cdots,X_n
X
1
,
X
2
,
⋯
,
X
n
的任意线性组合
l1
X
1
+
l
2
X
2
+
⋯
+
l
n
X
n
l_1X_1+l_2X_2+\cdots+l_nX_n
l
1
X
1
+
l
2
X
2
+
⋯
+
l
n
X
n
服从一维正态分布(其中
l1
,
l
2
,
⋯
,
l
n
l_1,l_2,\cdots,l_n
l
1
,
l
2
,
⋯
,
l
n
不全为零)
30
3^0\quad
3
0
若
(X
1
,
X
2
,
⋯
,
X
n
)
(X_1,X_2,\cdots,X_n)
(
X
1
,
X
2
,
⋯
,
X
n
)
服从
nn
n
维正态分布,设
Y1
,
Y
2
,
⋯
,
Y
k
Y_1,Y_2,\cdots,Y_k
Y
1
,
Y
2
,
⋯
,
Y
k
是
Xj
(
j
=
1
,
2
,
⋯
,
n
)
X_j(j=1,2,\cdots,n)
X
j
(
j
=
1
,
2
,
⋯
,
n
)
的线性函数,则
(Y
1
,
Y
2
,
⋯
,
Y
k
)
(Y_1,Y_2,\cdots,Y_k)
(
Y
1
,
Y
2
,
⋯
,
Y
k
)
也服从多维正态分布,这一性质称为正态变量的线性变换不变性
40
4^0\quad
4
0
设
(X
1
,
X
2
,
⋯
,
X
n
)
(X_1,X_2,\cdots,X_n)
(
X
1
,
X
2
,
⋯
,
X
n
)
服从
nn
n
维正态分布,则”
X1
,
X
2
,
⋯
,
X
n
X_1,X_2,\cdots,X_n
X
1
,
X
2
,
⋯
,
X
n
相互独立”与”
X1
,
X
2
,
⋯
,
X
n
X_1,X_2,\cdots,X_n
X
1
,
X
2
,
⋯
,
X
n
两两不相关“是等价的。
定理一
-
设
X1
,
X
2
,
⋯
,
X
n
X_1,X_2,\cdots,X_n
X
1
,
X
2
,
⋯
,
X
n
是来自正态总体
N(
μ
,
σ
2
)
N(\mu,\sigma^2)
N
(
μ
,
σ
2
)
的样本,
X‾
\overline{X}
X
是样本均值,则有
X‾
∼
N
(
μ
,
σ
2
/
n
)
.
\overline{X}\sim N(\mu,\sigma^2/n).
X
∼
N
(
μ
,
σ
2
/
n
)
.
证明很简单,由引言1可知,
E(
X
‾
)
=
μ
,
D
(
X
‾
)
=
σ
2
/
n
E(\overline{X})=\mu,\quad D(\overline{X})=\sigma^2/n
E
(
X
)
=
μ
,
D
(
X
)
=
σ
2
/
n
而
X‾
=
1
n
∑
i
=
1
n
X
i
\overline{X}=\frac{1}{n}\sum\limits_{i=1}^nX_i
X
=
n
1
i
=
1
∑
n
X
i
,
Xi
X_i
X
i
服从正态分布,则根据引理2可知,
X‾
∼
N
(
μ
,
σ
2
/
n
)
.
\overline{X}\sim N(\mu,\sigma^2/n).
X
∼
N
(
μ
,
σ
2
/
n
)
.
定理二
-
设
X1
,
X
2
,
⋯
,
X
n
X_1,X_2,\cdots,X_n
X
1
,
X
2
,
⋯
,
X
n
是来自正态总体
N(
μ
,
σ
2
)
N(\mu,\sigma^2)
N
(
μ
,
σ
2
)
的样本,
X‾
,
S
2
\overline{X},S^2
X
,
S
2
分别是样本均值和样本方差,则有
10
(
n
−
1
)
S
2
σ
2
∼
χ
2
(
n
−
1
)
1^0\quad \frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1)
1
0
σ
2
(
n
−
1
)
S
2
∼
χ
2
(
n
−
1
)
20
X
‾
2^0\quad \overline{X}
2
0
X
和
S2
S^2
S
2
相互独立证明:
(n
−
1
)
S
2
σ
2
=
(
n
−
1
)
σ
2
×
1
(
n
−
1
)
∑
i
=
1
n
(
X
i
−
X
‾
)
2
=
∑
i
=
1
n
(
X
i
−
X
‾
)
2
σ
2
=
∑
i
=
1
n
[
(
X
i
−
μ
)
−
(
X
‾
−
μ
)
]
2
σ
2
=
∑
i
=
1
n
(
X
i
−
μ
σ
−
X
‾
−
μ
σ
)
2
\begin{aligned} \frac{(n-1)S^2}{\sigma^2} &= \frac{(n-1)}{\sigma^2}\times \frac{1}{(n-1)}\sum\limits_{i=1}^n(X_i-\overline{X})^2 \\&= \frac{\sum\limits_{i=1}^n(X_i-\overline{X})^2}{\sigma^2}\\&=\frac{\sum\limits_{i=1}^n[(X_i-\mu)-(\overline{X}-\mu)]^2}{\sigma^2}\\&= \sum\limits_{i=1}^n\bigg(\frac{X_i-\mu}{\sigma}-\frac{\overline{X}-\mu}{\sigma}\bigg)^2\end{aligned}
σ
2
(
n
−
1
)
S
2
=
σ
2
(
n
−
1
)
×
(
n
−
1
)
1
i
=
1
∑
n
(
X
i
−
X
)
2
=
σ
2
i
=
1
∑
n
(
X
i
−
X
)
2
=
σ
2
i
=
1
∑
n
[
(
X
i
−
μ
)
−
(
X
−
μ
)
]
2
=
i
=
1
∑
n
(
σ
X
i
−
μ
−
σ
X
−
μ
)
2
为了方便,我们令
Zi
=
X
i
−
μ
σ
Z_i=\frac{X_i-\mu}{\sigma}
Z
i
=
σ
X
i
−
μ
,由于
Xi
∼
N
(
μ
,
σ
2
)
X_i\sim N(\mu,\sigma^2)
X
i
∼
N
(
μ
,
σ
2
)
,因此
Zi
∼
N
(
0
,
1
)
Z_i\sim N(0,1)
Z
i
∼
N
(
0
,
1
)
且
Z‾
=
X
‾
−
μ
σ
\overline{Z} = \frac{\overline{X}-\mu}{\sigma}
Z
=
σ
X
−
μ
,则
(n
−
1
)
S
2
σ
2
=
∑
i
=
1
n
(
Z
i
−
Z
‾
)
2
=
∑
i
=
1
n
(
Z
i
2
−
2
Z
i
Z
‾
+
Z
‾
2
)
=
∑
i
=
1
n
Z
i
2
−
2
Z
‾
∑
i
=
1
n
Z
i
+
∑
i
=
1
n
Z
‾
2
=
∑
i
=
1
n
Z
i
2
−
2
n
Z
‾
2
+
n
Z
‾
2
=
∑
i
=
1
n
Z
i
2
−
n
Z
‾
2
\begin{aligned} \frac{(n-1)S^2}{\sigma^2} &= \sum\limits_{i=1}^n(Z_i-\overline{Z})^2 \\&= \sum\limits_{i=1}^n(Z_i^2-2Z_i\overline{Z}+\overline{Z}^2) \\&= \sum\limits_{i=1}^nZ_i^2-2\overline{Z}\sum\limits_{i=1}^nZ_i+\sum\limits_{i=1}^n\overline{Z}^2 \\&= \sum\limits_{i=1}^nZ_i^2-2n\overline{Z}^2+n\overline{Z}^2\\&=\sum\limits_{i=1}^nZ_i^2-n\overline{Z}^2 \end{aligned}
σ
2
(
n
−
1
)
S
2
=
i
=
1
∑
n
(
Z
i
−
Z
)
2
=
i
=
1
∑
n
(
Z
i
2
−
2
Z
i
Z
+
Z
2
)
=
i
=
1
∑
n
Z
i
2
−
2
Z
i
=
1
∑
n
Z
i
+
i
=
1
∑
n
Z
2
=
i
=
1
∑
n
Z
i
2
−
2
n
Z
2
+
n
Z
2
=
i
=
1
∑
n
Z
i
2
−
n
Z
2
取一个
nn
n
阶正交矩阵
A=
(
a
i
j
)
A=(a_{ij})
A
=
(
a
i
j
)
,其第一行元素均为
1/
n
1/\sqrt{n}
1
/
n
A=
[
1
/
n
1
/
n
⋯
1
/
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋮
⋮
a
n
1
a
n
2
⋯
a
n
n
]
A = \begin{bmatrix}1/\sqrt{n} & 1/\sqrt{n} & \cdots & 1/\sqrt{n} \\ a_{21} & a_{22} & \cdots &a_{2n}\\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn}\end{bmatrix}
A
=
⎣
⎢
⎢
⎢
⎡
1
/
n
a
2
1
⋮
a
n
1
1
/
n
a
2
2
⋮
a
n
2
⋯
⋯
⋮
⋯
1
/
n
a
2
n
⋮
a
n
n
⎦
⎥
⎥
⎥
⎤
对
AA
A
做正交变换
Y=
A
Z
Y=AZ
Y
=
A
Z
,有
Y=
[
Y
1
Y
2
⋮
Y
n
]
,
Z
=
[
Z
1
Z
2
⋮
Z
n
]
Y = \begin{bmatrix}Y_1 \\Y_2\\ \vdots \\Y_n \end{bmatrix},Z = \begin{bmatrix}Z_1 \\Z_2\\ \vdots \\Z_n \end{bmatrix}
Y
=
⎣
⎢
⎢
⎢
⎡
Y
1
Y
2
⋮
Y
n
⎦
⎥
⎥
⎥
⎤
,
Z
=
⎣
⎢
⎢
⎢
⎡
Z
1
Z
2
⋮
Z
n
⎦
⎥
⎥
⎥
⎤
由于
Yi
=
∑
j
=
1
n
a
i
j
Z
j
,
i
=
1
,
2
,
⋯
,
n
Y_i=\sum\limits_{j=1}^na_{ij}Z_j,\quad i=1,2,\cdots ,n
Y
i
=
j
=
1
∑
n
a
i
j
Z
j
,
i
=
1
,
2
,
⋯
,
n
,因此
Yi
Y_i
Y
i
仍服从正态分布,由
Zi
∼
N
(
0
,
1
)
Z_i \sim N(0,1)
Z
i
∼
N
(
0
,
1
)
可知
E(
Y
i
)
=
E
(
∑
j
=
1
n
a
i
j
Z
j
)
=
∑
j
=
1
n
a
i
j
E
(
Z
j
)
=
0
E(Y_i) = E(\sum\limits_{j=1}^na_{ij}Z_j) = \sum\limits_{j=1}^na_{ij}E(Z_j) = 0
E
(
Y
i
)
=
E
(
j
=
1
∑
n
a
i
j
Z
j
)
=
j
=
1
∑
n
a
i
j
E
(
Z
j
)
=
0
D(
Y
i
)
=
D
(
∑
j
=
1
n
a
i
j
Z
j
)
=
∑
j
=
1
n
a
i
j
2
D
(
Z
j
)
=
∑
j
=
1
n
a
i
j
2
=
1
D(Y_i) = D(\sum\limits_{j=1}^na_{ij}Z_j) = \sum\limits_{j=1}^na_{ij}^2D(Z_j) = \sum\limits_{j=1}^na_{ij}^2=1
D
(
Y
i
)
=
D
(
j
=
1
∑
n
a
i
j
Z
j
)
=
j
=
1
∑
n
a
i
j
2
D
(
Z
j
)
=
j
=
1
∑
n
a
i
j
2
=
1
又由
Co
v
(
Z
i
,
Z
j
)
=
δ
i
j
=
{
0
,
i
≠
j
1
,
i
=
j
,
i
,
j
=
1
,
2
,
⋯
,
n
Cov(Z_i,Z_j) = \delta_{ij}=\begin{cases}0,\quad i\neq j \\1,\quad i=j\end{cases} \quad ,i,j=1,2,\cdots,n
C
o
v
(
Z
i
,
Z
j
)
=
δ
i
j
=
{
0
,
i
=
j
1
,
i
=
j
,
i
,
j
=
1
,
2
,
⋯
,
n
Co
v
(
Y
i
,
Y
k
)
=
C
o
v
(
∑
j
=
1
n
a
i
j
Z
j
,
∑
l
=
1
n
a
k
l
Z
l
)
=
∑
j
=
1
n
∑
l
=
1
n
a
i
j
a
k
l
C
o
v
(
Z
j
,
Z
l
)
=
∑
j
=
1
n
a
i
j
a
k
j
=
{
0
,
i
≠
j
1
,
i
=
j
(
正
交
矩
阵
性
质
,
各
行
均
是
单
位
向
量
且
两
两
正
交
)
\begin{aligned}Cov(Y_i,Y_k) &= Cov(\sum\limits_{j=1}^na_{ij}Z_j,\sum\limits_{l=1}^na_{kl}Z_l)\\&=\sum\limits_{j=1}^n\sum\limits_{l=1}^n a_{ij}a_{kl}Cov(Z_j,Z_l) \\&=\sum\limits_{j=1}^na_{ij}a_{kj} \\&=\begin{cases}0,\quad i\neq j \\1,\quad i=j\end{cases}(正交矩阵性质,各行均是单位向量且两两正交)\end{aligned}
C
o
v
(
Y
i
,
Y
k
)
=
C
o
v
(
j
=
1
∑
n
a
i
j
Z
j
,
l
=
1
∑
n
a
k
l
Z
l
)
=
j
=
1
∑
n
l
=
1
∑
n
a
i
j
a
k
l
C
o
v
(
Z
j
,
Z
l
)
=
j
=
1
∑
n
a
i
j
a
k
j
=
{
0
,
i
=
j
1
,
i
=
j
(
正
交
矩
阵
性
质
,
各
行
均
是
单
位
向
量
且
两
两
正
交
)
由此可知
Y1
,
Y
2
,
⋯
,
Y
n
Y_1,Y_2,\cdots,Y_n
Y
1
,
Y
2
,
⋯
,
Y
n
两两互不相关。又由于
nn
n
维随机变量
(Y
1
,
Y
2
,
⋯
,
Y
n
)
(Y_1,Y_2,\cdots,Y_n)
(
Y
1
,
Y
2
,
⋯
,
Y
n
)
是由
nn
n
维随机变量
(X
1
,
X
2
,
⋯
,
X
n
)
(X_1,X_2,\cdots,X_n)
(
X
1
,
X
2
,
⋯
,
X
n
)
经线性变换得到,因此
(Y
1
,
Y
2
,
⋯
,
Y
n
)
(Y_1,Y_2,\cdots,Y_n)
(
Y
1
,
Y
2
,
⋯
,
Y
n
)
也是
nn
n
维正态随机变量,由
引理3性质4
可知,
Y1
,
Y
2
,
⋯
,
Y
n
Y_1,Y_2,\cdots,Y_n
Y
1
,
Y
2
,
⋯
,
Y
n
两两互不相关也即是
Y1
,
Y
2
,
⋯
,
Y
n
Y_1,Y_2,\cdots,Y_n
Y
1
,
Y
2
,
⋯
,
Y
n
互相独立。前面已经计算出
E(
Y
i
)
=
0
,
D
(
Y
i
)
=
1
E(Y_i)=0,D(Y_i)=1
E
(
Y
i
)
=
0
,
D
(
Y
i
)
=
1
因此
Yi
∼
N
(
0
,
1
)
,
i
=
1
,
2
,
⋯
,
n
.
Y_i\sim N(0,1),i=1,2,\cdots,n.
Y
i
∼
N
(
0
,
1
)
,
i
=
1
,
2
,
⋯
,
n
.
Y1
=
∑
j
=
1
n
a
1
j
Z
j
=
∑
j
=
1
n
1
n
Z
j
=
1
n
∗
n
Z
‾
=
n
Z
‾
\begin{aligned}Y_1&=\sum\limits_{j=1}^na_{1j}Z_j \\&= \sum\limits_{j=1}^n\frac{1}{\sqrt{n}}Z_j\\&=\frac{1}{\sqrt{n}}*n\overline{Z}\\&=\sqrt{n}\overline{Z}\end{aligned}
Y
1
=
j
=
1
∑
n
a
1
j
Z
j
=
j
=
1
∑
n
n
1
Z
j
=
n
1
∗
n
Z
=
n
Z
∑i
=
1
n
Y
i
2
=
Y
T
Y
=
(
A
Z
)
T
(
A
Z
)
=
Z
T
A
T
A
Z
=
Z
T
Z
=
∑
i
=
1
n
Z
i
2
\begin{aligned}\sum\limits_{i=1}^nY_i^2&=Y^TY=(AZ)^T(AZ)\\&=Z^TA^TAZ = Z^TZ = \sum\limits_{i=1}^nZ_i^2\end{aligned}
i
=
1
∑
n
Y
i
2
=
Y
T
Y
=
(
A
Z
)
T
(
A
Z
)
=
Z
T
A
T
A
Z
=
Z
T
Z
=
i
=
1
∑
n
Z
i
2
此时有
(n
−
1
)
S
2
σ
2
=
∑
i
=
1
n
Z
i
2
−
n
Z
‾
2
=
∑
i
=
1
n
Y
i
2
−
Y
1
2
=
∑
i
=
2
n
Y
i
2
\begin{aligned} \frac{(n-1)S^2}{\sigma^2} &=\sum\limits_{i=1}^nZ_i^2-n\overline{Z}^2 \\&=\sum\limits_{i=1}^nY_i^2-Y_1^2\\&=\sum\limits_{i=2}^nY_i^2\end{aligned}
σ
2
(
n
−
1
)
S
2
=
i
=
1
∑
n
Z
i
2
−
n
Z
2
=
i
=
1
∑
n
Y
i
2
−
Y
1
2
=
i
=
2
∑
n
Y
i
2
由于
Y2
,
Y
3
,
⋯
,
Y
n
Y_2,Y_3,\cdots,Y_n
Y
2
,
Y
3
,
⋯
,
Y
n
相互独立,且
Yi
∼
N
(
0
,
1
)
Y_i\sim N(0,1)
Y
i
∼
N
(
0
,
1
)
,因此
(n
−
1
)
S
2
σ
2
=
∑
i
=
2
n
Y
i
2
∼
χ
2
(
n
−
1
)
.
\frac{(n-1)S^2}{\sigma^2}=\sum\limits_{i=2}^nY_i^2\sim\chi^2(n-1).
σ
2
(
n
−
1
)
S
2
=
i
=
2
∑
n
Y
i
2
∼
χ
2
(
n
−
1
)
.
其次,
X‾
=
σ
Z
‾
+
μ
=
σ
Y
1
n
+
μ
\overline{X} = \sigma\overline{Z}+\mu = \frac{\sigma Y_1}{\sqrt{n}}+\mu
X
=
σ
Z
+
μ
=
n
σ
Y
1
+
μ
仅跟
Y1
Y_1
Y
1
有关,而
S2
=
σ
2
n
−
1
∑
i
=
2
n
Y
i
2
S^2=\frac{\sigma^2}{n-1}\sum\limits_{i=2}^nY_i^2
S
2
=
n
−
1
σ
2
i
=
2
∑
n
Y
i
2
仅依赖于
Y2
,
Y
3
,
⋯
,
Y
n
Y_2,Y_3,\cdots,Y_n
Y
2
,
Y
3
,
⋯
,
Y
n
,又因为
Y1
,
Y
2
,
⋯
,
Y
n
Y_1,Y_2,\cdots,Y_n
Y
1
,
Y
2
,
⋯
,
Y
n
相互独立,因此有
X‾
\overline{X}
X
和
S2
S^2
S
2
相互独立
定理三
-
设
X1
,
X
2
,
⋯
,
X
n
X_1,X_2,\cdots,X_n
X
1
,
X
2
,
⋯
,
X
n
是来自正态总体
N(
μ
,
σ
2
)
N(\mu,\sigma^2)
N
(
μ
,
σ
2
)
的样本,
X‾
,
S
2
\overline{X},S^2
X
,
S
2
分别是样本均值和样本方差,则有
X‾
−
μ
S
/
n
∼
t
(
n
−
1
)
\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1)
S
/
n
X
−
μ
∼
t
(
n
−
1
)
证明:
由定理一可知,
X‾
∼
N
(
μ
,
σ
2
/
n
)
.
\overline{X}\sim N(\mu,\sigma^2/n).
X
∼
N
(
μ
,
σ
2
/
n
)
.
进行标准化之后有
X‾
−
μ
σ
/
n
∼
N
(
0
,
1
)
.
\frac{\overline{X}-\mu}{\sigma /\sqrt{n}}\sim N(0,1).
σ
/
n
X
−
μ
∼
N
(
0
,
1
)
.
由定理二可知,
(n
−
1
)
S
2
σ
2
∼
χ
2
(
n
−
1
)
\frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1)
σ
2
(
n
−
1
)
S
2
∼
χ
2
(
n
−
1
)
根据
tt
t
分布定义有
X‾
−
μ
σ
/
n
(
n
−
1
)
S
2
σ
2
(
n
−
1
)
=
X
‾
−
μ
S
/
n
∼
t
(
n
−
1
)
\begin{aligned} \frac{\frac{\overline{X}-\mu}{\sigma/ \sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2(n-1)}}} = \frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1)\end{aligned}
σ
2
(
n
−
1
)
(
n
−
1
)
S
2
σ
/
n
X
−
μ
=
S
/
n
X
−
μ
∼
t
(
n
−
1
)
证明完毕
定理四
-
设
X1
,
X
2
,
⋯
,
X
n
1
X_1,X_2,\cdots,X_{n_1}
X
1
,
X
2
,
⋯
,
X
n
1
与
Y1
,
Y
2
,
⋯
,
Y
n
1
Y_1,Y_2,\cdots,Y_{n_1}
Y
1
,
Y
2
,
⋯
,
Y
n
1
是来自正态总体
N(
μ
1
,
σ
1
2
)
N(\mu_1,\sigma_1^2)
N
(
μ
1
,
σ
1
2
)
和
N(
μ
2
,
σ
2
2
)
N(\mu_2,\sigma_2^2)
N
(
μ
2
,
σ
2
2
)
的样本,且这两个样本 相互独立. 设
X‾
=
1
n
1
∑
i
=
1
n
1
X
i
,
Y
‾
=
1
n
2
∑
i
=
1
n
2
Y
i
\overline{X}=\frac{1}{n_1}\sum\limits_{i=1}^{n_1}X_i,\overline{Y}=\frac{1}{n_2}\sum\limits_{i=1}^{n_2}Y_i
X
=
n
1
1
i
=
1
∑
n
1
X
i
,
Y
=
n
2
1
i
=
1
∑
n
2
Y
i
分别是这两个样本的样本均值;
S1
2
=
1
n
1
−
1
∑
i
=
1
n
1
(
X
i
−
X
‾
)
2
,
S
2
2
=
1
n
2
−
1
∑
i
=
1
n
2
(
Y
i
−
Y
‾
)
2
S_1^2=\frac{1}{n_1-1}\sum\limits_{i=1}^{n_1}(X_i-\overline{X})^2,S_2^2=\frac{1}{n_2-1}\sum\limits_{i=1}^{n_2}(Y_i-\overline{Y})^2
S
1
2
=
n
1
−
1
1
i
=
1
∑
n
1
(
X
i
−
X
)
2
,
S
2
2
=
n
2
−
1
1
i
=
1
∑
n
2
(
Y
i
−
Y
)
2
分别是两个样本的样本方差,则有
10
S
1
2
/
S
2
2
σ
1
2
/
σ
2
2
∼
F
(
n
1
−
1
,
n
2
−
1
)
1^0\quad \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}\sim F(n_1-1,n_2-1)
1
0
σ
1
2
/
σ
2
2
S
1
2
/
S
2
2
∼
F
(
n
1
−
1
,
n
2
−
1
)
20
2^0\quad
2
0
当
σ1
2
=
σ
2
2
=
σ
2
\sigma_1^2=\sigma_2^2=\sigma^2
σ
1
2
=
σ
2
2
=
σ
2
时,
(X
‾
−
Y
‾
)
−
(
μ
1
−
μ
2
)
S
w
1
n
1
+
1
n
2
∼
t
(
n
1
+
n
2
−
2
)
\frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2)
S
w
n
1
1
+
n
2
1
(
X
−
Y
)
−
(
μ
1
−
μ
2
)
∼
t
(
n
1
+
n
2
−
2
)
其中
Sw
2
=
(
n
1
−
1
)
S
1
2
+
(
n
2
−
1
)
S
2
2
n
1
+
n
2
−
2
,
S
w
=
S
w
2
S_w^2=\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}, S_w=\sqrt{S_w^2}
S
w
2
=
n
1
+
n
2
−
2
(
n
1
−
1
)
S
1
2
+
(
n
2
−
1
)
S
2
2
,
S
w
=
S
w
2
证明:
10
1^0 \quad
1
0
由定理二可知
(n
1
−
1
)
S
1
2
σ
1
2
∼
χ
2
(
n
1
−
1
)
(
1
)
(
n
2
−
1
)
S
2
2
σ
2
2
∼
χ
2
(
n
2
−
1
)
(
2
)
\frac{(n_1-1)S_1^2}{\sigma_1^2}\sim \chi^2(n_1-1) \quad(1) \\\frac{(n_2-1)S_2^2}{\sigma_2^2}\sim \chi^2(n_2-1)\quad(2)
σ
1
2
(
n
1
−
1
)
S
1
2
∼
χ
2
(
n
1
−
1
)
(
1
)
σ
2
2
(
n
2
−
1
)
S
2
2
∼
χ
2
(
n
2
−
1
)
(
2
)
此时有
(n
1
−
1
)
S
1
2
(
n
1
−
1
)
σ
1
2
/
(
n
2
−
1
)
S
2
2
(
n
2
−
1
)
σ
2
2
∼
F
(
n
1
−
1
,
n
2
−
1
)
\frac{(n_1-1)S_1^2}{(n_1-1)\sigma_1^2}\bigg/\frac{(n_2-1)S_2^2}{(n_2-1)\sigma_2^2} \sim F(n_1-1,n_2-1)
(
n
1
−
1
)
σ
1
2
(
n
1
−
1
)
S
1
2
/
(
n
2
−
1
)
σ
2
2
(
n
2
−
1
)
S
2
2
∼
F
(
n
1
−
1
,
n
2
−
1
)
即
S1
2
/
S
2
2
σ
1
2
/
σ
2
2
∼
F
(
n
1
−
1
,
n
2
−
1
)
\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}\sim F(n_1-1,n_2-1)
σ
1
2
/
σ
2
2
S
1
2
/
S
2
2
∼
F
(
n
1
−
1
,
n
2
−
1
)
20
2^0\quad
2
0
由式
(1
)
(1)
(
1
)
和
(2
)
(2)
(
2
)
,以及
χ2
\chi^2
χ
2
分布的可加性可知
(n
1
−
1
)
S
1
2
σ
1
2
+
(
n
2
−
1
)
S
2
2
σ
2
2
服
从
χ
2
(
n
1
+
n
2
−
2
)
\frac{(n_1-1)S_1^2}{\sigma_1^2}+\frac{(n_2-1)S_2^2}{\sigma_2^2} 服从\chi^2(n_1+n_2-2)
σ
1
2
(
n
1
−
1
)
S
1
2
+
σ
2
2
(
n
2
−
1
)
S
2
2
服
从
χ
2
(
n
1
+
n
2
−
2
)
由
σ1
2
=
σ
2
2
=
σ
2
\sigma_1^2=\sigma_2^2=\sigma^2
σ
1
2
=
σ
2
2
=
σ
2
可知,
(n
1
−
1
)
S
1
2
+
(
n
2
−
1
)
S
2
2
σ
2
∼
χ
2
(
n
1
+
n
2
−
2
)
(
3
)
\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{\sigma^2} \sim \chi^2(n_1+n_2-2)\quad (3)
σ
2
(
n
1
−
1
)
S
1
2
+
(
n
2
−
1
)
S
2
2
∼
χ
2
(
n
1
+
n
2
−
2
)
(
3
)
由定理一可知
X‾
∼
N
(
μ
1
,
σ
2
/
n
)
,
Y
‾
∼
N
(
μ
2
,
σ
2
/
n
)
.
\overline{X}\sim N(\mu_1,\sigma^2/n),\overline{Y}\sim N(\mu_2,\sigma^2/n).
X
∼
N
(
μ
1
,
σ
2
/
n
)
,
Y
∼
N
(
μ
2
,
σ
2
/
n
)
.
因此
X‾
−
Y
‾
∼
N
(
μ
1
−
μ
2
,
σ
2
/
n
1
+
σ
2
/
n
2
)
\overline{X}-\overline{Y}\sim N(\mu_1-\mu_2,\sigma^2/n_1+\sigma^2/n_2)
X
−
Y
∼
N
(
μ
1
−
μ
2
,
σ
2
/
n
1
+
σ
2
/
n
2
)
,对其进行标准化有
(X
‾
−
Y
‾
)
−
(
μ
1
−
μ
2
)
σ
2
/
n
1
+
σ
2
/
n
2
∼
N
(
0
,
1
)
(
4
)
\frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\sigma^2/n_1+\sigma^2/n_2}} \sim N(0,1)\quad (4)
σ
2
/
n
1
+
σ
2
/
n
2
(
X
−
Y
)
−
(
μ
1
−
μ
2
)
∼
N
(
0
,
1
)
(
4
)
由式
(3
)
、
(
4
)
(3)、(4)
(
3
)
、
(
4
)
可知
(X
‾
−
Y
‾
)
−
(
μ
1
−
μ
2
)
σ
2
/
n
1
+
σ
2
/
n
2
/
(
n
1
−
1
)
S
1
2
+
(
n
2
−
1
)
S
2
2
σ
2
(
n
1
+
n
2
−
2
)
∼
t
(
n
1
+
n
2
−
2
)
\frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\sigma^2/n_1+\sigma^2/n_2}}\bigg/\sqrt{\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{\sigma^2(n_1+n_2-2)}} \sim t(n_1+n_2-2)
σ
2
/
n
1
+
σ
2
/
n
2
(
X
−
Y
)
−
(
μ
1
−
μ
2
)
/
σ
2
(
n
1
+
n
2
−
2
)
(
n
1
−
1
)
S
1
2
+
(
n
2
−
1
)
S
2
2
∼
t
(
n
1
+
n
2
−
2
)
即
(X
‾
−
Y
‾
)
−
(
μ
1
−
μ
2
)
S
w
1
n
1
+
1
n
2
∼
t
(
n
1
+
n
2
−
2
)
\frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2)
S
w
n
1
1
+
n
2
1
(
X
−
Y
)
−
(
μ
1
−
μ
2
)
∼
t
(
n
1
+
n
2
−
2
)
证明完毕