正态总体的样本均值与样本方差的分布定理

  • Post author:
  • Post category:其他




引理

  1. 设总体



    X

    X






    X





    (不管服从什么分布,只要均值和方差存在)的均值为



    μ

    \mu






    μ





    ,方差为



    σ

    2

    \sigma^2







    σ










    2
















    X

    1

    ,

    X

    2

    ,


    ,

    X

    n

    X_1,X_2,\cdots,X_n







    X










    1


















    ,





    X










    2


















    ,











    ,





    X










    n





















    是来自



    X

    X






    X





    的一个样本,



    X

    ,

    S

    2

    \overline{X},S^2














    X














    ,





    S










    2












    分别是样本均值和样本方差,则有




    E

    (

    X

    )

    =

    μ

    ,

    D

    (

    X

    )

    =

    σ

    2

    /

    n

    ,

    E

    (

    S

    2

    )

    =

    σ

    2

    E(\overline{X})=\mu,\quad D(\overline{X})=\sigma^2/n, \quad E(S^2)=\sigma^2






    E


    (










    X














    )




    =








    μ


    ,






    D


    (










    X














    )




    =









    σ










    2









    /


    n


    ,






    E


    (



    S










    2









    )




    =









    σ










    2












  2. 正态分布线性可加性: 若



    X

    i

    N

    (

    μ

    i

    ,

    σ

    i

    2

    )

    ,

    i

    =

    1

    ,

    2

    ,


    ,

    n

    X_i\sim N(\mu_i,\sigma_i^2),i=1,2,\cdots,n







    X










    i





























    N


    (



    μ










    i


















    ,





    σ










    i








    2


















    )


    ,




    i




    =








    1


    ,




    2


    ,











    ,




    n





    ,且他们相互独立,则他们的线性组合:



    C

    1

    X

    1

    +

    C

    2

    X

    2

    +

    +

    C

    n

    X

    n

    C_1X_1+C_2X_2+\cdots+C_nX_n







    C










    1



















    X










    1




















    +









    C










    2



















    X










    2




















    +













    +









    C










    n



















    X










    n





















    ,(



    C

    1

    ,

    C

    2

    ,


    ,

    C

    n

    C_1,C_2,\cdots,C_n







    C










    1


















    ,





    C










    2


















    ,











    ,





    C










    n





















    是不全为



    0

    0






    0





    的常数)仍然服从正态分布,且有




    C

    1

    X

    1

    +

    C

    2

    X

    2

    +

    +

    C

    n

    X

    n

    N

    (

    i

    =

    1

    n

    C

    i

    μ

    i

    ,

    i

    =

    1

    n

    C

    i

    2

    σ

    i

    2

    )

    C_1X_1+C_2X_2+\cdots+C_nX_n\sim N(\sum\limits_{i=1}^nC_i\mu_i,\sum\limits_{i=1}^nC_i^2\sigma_i^2)







    C










    1



















    X










    1




















    +









    C










    2



















    X










    2




















    +













    +









    C










    n



















    X










    n





























    N


    (











    i


    =


    1


















    n




















    C










    i



















    μ










    i


















    ,













    i


    =


    1


















    n




















    C










    i








    2



















    σ










    i








    2


















    )








  3. n

    n






    n





    维正态随机变量重要性质




    1

    0

    1^0\quad







    1










    0

















    n

    n






    n





    维正态随机变量



    (

    X

    1

    ,

    X

    2

    ,


    ,

    X

    n

    )

    (X_1,X_2,\cdots,X_n)






    (



    X










    1


















    ,





    X










    2


















    ,











    ,





    X










    n


















    )





    的每一个分量



    X

    i

    ,

    i

    =

    1

    ,

    2

    ,


    ,

    n

    X_i,i=1,2,\cdots,n







    X










    i


















    ,




    i




    =








    1


    ,




    2


    ,











    ,




    n





    都是正态随机变量,反之,若



    X

    1

    ,

    X

    2

    ,


    ,

    X

    n

    X_1,X_2,\cdots,X_n







    X










    1


















    ,





    X










    2


















    ,











    ,





    X










    n





















    都是正态随机变量,且相互独立,则



    (

    X

    1

    ,

    X

    2

    ,


    ,

    X

    n

    )

    (X_1,X_2,\cdots,X_n)






    (



    X










    1


















    ,





    X










    2


















    ,











    ,





    X










    n


















    )









    n

    n






    n





    维正态随机变量




    2

    0

    2^0\quad







    2










    0

















    n

    n






    n





    维随机变量



    (

    X

    1

    ,

    X

    2

    ,


    ,

    X

    n

    )

    (X_1,X_2,\cdots,X_n)






    (



    X










    1


















    ,





    X










    2


















    ,











    ,





    X










    n


















    )





    服从



    n

    n






    n





    维正态分布的充要条件是



    X

    1

    ,

    X

    2

    ,


    ,

    X

    n

    X_1,X_2,\cdots,X_n







    X










    1


















    ,





    X










    2


















    ,











    ,





    X










    n





















    的任意线性组合




    l

    1

    X

    1

    +

    l

    2

    X

    2

    +

    +

    l

    n

    X

    n

    l_1X_1+l_2X_2+\cdots+l_nX_n







    l










    1



















    X










    1




















    +









    l










    2



















    X










    2




















    +













    +









    l










    n



















    X










    n






















    服从一维正态分布(其中



    l

    1

    ,

    l

    2

    ,


    ,

    l

    n

    l_1,l_2,\cdots,l_n







    l










    1


















    ,





    l










    2


















    ,











    ,





    l










    n





















    不全为零)




    3

    0

    3^0\quad







    3










    0


















    (

    X

    1

    ,

    X

    2

    ,


    ,

    X

    n

    )

    (X_1,X_2,\cdots,X_n)






    (



    X










    1


















    ,





    X










    2


















    ,











    ,





    X










    n


















    )





    服从



    n

    n






    n





    维正态分布,设



    Y

    1

    ,

    Y

    2

    ,


    ,

    Y

    k

    Y_1,Y_2,\cdots,Y_k







    Y










    1


















    ,





    Y










    2


















    ,











    ,





    Y










    k

























    X

    j

    (

    j

    =

    1

    ,

    2

    ,


    ,

    n

    )

    X_j(j=1,2,\cdots,n)







    X










    j


















    (


    j




    =








    1


    ,




    2


    ,











    ,




    n


    )





    的线性函数,则



    (

    Y

    1

    ,

    Y

    2

    ,


    ,

    Y

    k

    )

    (Y_1,Y_2,\cdots,Y_k)






    (



    Y










    1


















    ,





    Y










    2


















    ,











    ,





    Y










    k


















    )





    也服从多维正态分布,这一性质称为正态变量的线性变换不变性




    4

    0

    4^0\quad







    4










    0


















    (

    X

    1

    ,

    X

    2

    ,


    ,

    X

    n

    )

    (X_1,X_2,\cdots,X_n)






    (



    X










    1


















    ,





    X










    2


















    ,











    ,





    X










    n


















    )





    服从



    n

    n






    n





    维正态分布,则”



    X

    1

    ,

    X

    2

    ,


    ,

    X

    n

    X_1,X_2,\cdots,X_n







    X










    1


















    ,





    X










    2


















    ,











    ,





    X










    n





















    相互独立”与”



    X

    1

    ,

    X

    2

    ,


    ,

    X

    n

    X_1,X_2,\cdots,X_n







    X










    1


















    ,





    X










    2


















    ,











    ,





    X










    n





















    两两不相关“是等价的。



定理一





  • X

    1

    ,

    X

    2

    ,


    ,

    X

    n

    X_1,X_2,\cdots,X_n







    X










    1


















    ,





    X










    2


















    ,











    ,





    X










    n





















    是来自正态总体



    N

    (

    μ

    ,

    σ

    2

    )

    N(\mu,\sigma^2)






    N


    (


    μ


    ,





    σ










    2









    )





    的样本,



    X

    \overline{X}














    X

















    是样本均值,则有




    X

    N

    (

    μ

    ,

    σ

    2

    /

    n

    )

    .

    \overline{X}\sim N(\mu,\sigma^2/n).














    X

























    N


    (


    μ


    ,





    σ










    2









    /


    n


    )


    .





    证明很简单,由引言1可知,



    E

    (

    X

    )

    =

    μ

    ,

    D

    (

    X

    )

    =

    σ

    2

    /

    n

    E(\overline{X})=\mu,\quad D(\overline{X})=\sigma^2/n






    E


    (










    X














    )




    =








    μ


    ,






    D


    (










    X














    )




    =









    σ










    2









    /


    n








    X

    =

    1

    n

    i

    =

    1

    n

    X

    i

    \overline{X}=\frac{1}{n}\sum\limits_{i=1}^nX_i














    X
















    =




















    n
















    1
































    i


    =


    1


















    n




















    X










    i

























    X

    i

    X_i







    X










    i





















    服从正态分布,则根据引理2可知,




    X

    N

    (

    μ

    ,

    σ

    2

    /

    n

    )

    .

    \overline{X}\sim N(\mu,\sigma^2/n).














    X

























    N


    (


    μ


    ,





    σ










    2









    /


    n


    )


    .







定理二





  • X

    1

    ,

    X

    2

    ,


    ,

    X

    n

    X_1,X_2,\cdots,X_n







    X










    1


















    ,





    X










    2


















    ,











    ,





    X










    n





















    是来自正态总体



    N

    (

    μ

    ,

    σ

    2

    )

    N(\mu,\sigma^2)






    N


    (


    μ


    ,





    σ










    2









    )





    的样本,



    X

    ,

    S

    2

    \overline{X},S^2














    X














    ,





    S










    2












    分别是样本均值和样本方差,则有




    1

    0

    (

    n

    1

    )

    S

    2

    σ

    2

    χ

    2

    (

    n

    1

    )

    1^0\quad \frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1)







    1










    0
























    σ










    2























    (


    n





    1


    )



    S










    2








































    χ










    2









    (


    n













    1


    )







    2

    0

    X

    2^0\quad \overline{X}







    2










    0



















    X





















    S

    2

    S^2







    S










    2












    相互独立

    证明:




    (

    n

    1

    )

    S

    2

    σ

    2

    =

    (

    n

    1

    )

    σ

    2

    ×

    1

    (

    n

    1

    )

    i

    =

    1

    n

    (

    X

    i

    X

    )

    2

    =

    i

    =

    1

    n

    (

    X

    i

    X

    )

    2

    σ

    2

    =

    i

    =

    1

    n

    [

    (

    X

    i

    μ

    )

    (

    X

    μ

    )

    ]

    2

    σ

    2

    =

    i

    =

    1

    n

    (

    X

    i

    μ

    σ

    X

    μ

    σ

    )

    2

    \begin{aligned} \frac{(n-1)S^2}{\sigma^2} &= \frac{(n-1)}{\sigma^2}\times \frac{1}{(n-1)}\sum\limits_{i=1}^n(X_i-\overline{X})^2 \\&= \frac{\sum\limits_{i=1}^n(X_i-\overline{X})^2}{\sigma^2}\\&=\frac{\sum\limits_{i=1}^n[(X_i-\mu)-(\overline{X}-\mu)]^2}{\sigma^2}\\&= \sum\limits_{i=1}^n\bigg(\frac{X_i-\mu}{\sigma}-\frac{\overline{X}-\mu}{\sigma}\bigg)^2\end{aligned}




























    σ










    2





















    (


    n









    1


    )



    S










    2








































































    =
















    σ










    2





















    (


    n









    1


    )






















    ×















    (


    n









    1


    )














    1































    i


    =


    1


















    n

















    (



    X










    i

































    X















    )










    2



















    =
















    σ










    2






























    i


    =


    1


















    n

















    (



    X










    i

































    X















    )










    2





































    =
















    σ










    2






























    i


    =


    1


















    n

















    [


    (



    X










    i

























    μ


    )









    (










    X





















    μ


    )



    ]










    2





































    =













    i


    =


    1


















    n




















    (














    σ















    X










    i

























    μ






































    σ






















    X





















    μ






















    )











    2




























    为了方便,我们令



    Z

    i

    =

    X

    i

    μ

    σ

    Z_i=\frac{X_i-\mu}{\sigma}







    Z










    i




















    =




















    σ

















    X










    i





















    μ
























    ,由于



    X

    i

    N

    (

    μ

    ,

    σ

    2

    )

    X_i\sim N(\mu,\sigma^2)







    X










    i





























    N


    (


    μ


    ,





    σ










    2









    )





    ,因此



    Z

    i

    N

    (

    0

    ,

    1

    )

    Z_i\sim N(0,1)







    Z










    i





























    N


    (


    0


    ,




    1


    )








    Z

    =

    X

    μ

    σ

    \overline{Z} = \frac{\overline{X}-\mu}{\sigma}














    Z
















    =




















    σ
























    X

















    μ
























    ,则




    (

    n

    1

    )

    S

    2

    σ

    2

    =

    i

    =

    1

    n

    (

    Z

    i

    Z

    )

    2

    =

    i

    =

    1

    n

    (

    Z

    i

    2

    2

    Z

    i

    Z

    +

    Z

    2

    )

    =

    i

    =

    1

    n

    Z

    i

    2

    2

    Z

    i

    =

    1

    n

    Z

    i

    +

    i

    =

    1

    n

    Z

    2

    =

    i

    =

    1

    n

    Z

    i

    2

    2

    n

    Z

    2

    +

    n

    Z

    2

    =

    i

    =

    1

    n

    Z

    i

    2

    n

    Z

    2

    \begin{aligned} \frac{(n-1)S^2}{\sigma^2} &= \sum\limits_{i=1}^n(Z_i-\overline{Z})^2 \\&= \sum\limits_{i=1}^n(Z_i^2-2Z_i\overline{Z}+\overline{Z}^2) \\&= \sum\limits_{i=1}^nZ_i^2-2\overline{Z}\sum\limits_{i=1}^nZ_i+\sum\limits_{i=1}^n\overline{Z}^2 \\&= \sum\limits_{i=1}^nZ_i^2-2n\overline{Z}^2+n\overline{Z}^2\\&=\sum\limits_{i=1}^nZ_i^2-n\overline{Z}^2 \end{aligned}




























    σ










    2





















    (


    n









    1


    )



    S










    2














































































    =













    i


    =


    1


















    n

















    (



    Z










    i

































    Z















    )










    2



















    =













    i


    =


    1


















    n

















    (



    Z










    i








    2

























    2



    Z










    i


























    Z
















    +













    Z






















    2









    )












    =













    i


    =


    1


















    n




















    Z










    i








    2

























    2










    Z

























    i


    =


    1


















    n




















    Z










    i




















    +













    i


    =


    1


















    n




























    Z






















    2



















    =













    i


    =


    1


















    n




















    Z










    i








    2

























    2


    n











    Z






















    2











    +




    n











    Z






















    2



















    =













    i


    =


    1


















    n




















    Z










    i








    2

























    n











    Z






















    2




























    取一个



    n

    n






    n





    阶正交矩阵



    A

    =

    (

    a

    i

    j

    )

    A=(a_{ij})






    A




    =








    (



    a











    i


    j



















    )





    ,其第一行元素均为



    1

    /

    n

    1/\sqrt{n}






    1


    /










    n





























    A

    =

    [

    1

    /

    n

    1

    /

    n

    1

    /

    n

    a

    21

    a

    22

    a

    2

    n

    a

    n

    1

    a

    n

    2

    a

    n

    n

    ]

    A = \begin{bmatrix}1/\sqrt{n} & 1/\sqrt{n} & \cdots & 1/\sqrt{n} \\ a_{21} & a_{22} & \cdots &a_{2n}\\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn}\end{bmatrix}






    A




    =



















































































    1


    /










    n































    a











    2


    1







































    a











    n


    1














































    1


    /










    n































    a











    2


    2







































    a











    n


    2











































































































    1


    /










    n































    a











    2


    n







































    a











    n


    n











































































































    A

    A






    A





    做正交变换



    Y

    =

    A

    Z

    Y=AZ






    Y




    =








    A


    Z





    ,有





    Y

    =

    [

    Y

    1

    Y

    2

    Y

    n

    ]

    ,

    Z

    =

    [

    Z

    1

    Z

    2

    Z

    n

    ]

    Y = \begin{bmatrix}Y_1 \\Y_2\\ \vdots \\Y_n \end{bmatrix},Z = \begin{bmatrix}Z_1 \\Z_2\\ \vdots \\Z_n \end{bmatrix}






    Y




    =




















































































    Y










    1

























    Y










    2






































    Y










    n






































































































    ,




    Z




    =




















































































    Z










    1

























    Z










    2






































    Z










    n







































































































    由于



    Y

    i

    =

    j

    =

    1

    n

    a

    i

    j

    Z

    j

    ,

    i

    =

    1

    ,

    2

    ,


    ,

    n

    Y_i=\sum\limits_{j=1}^na_{ij}Z_j,\quad i=1,2,\cdots ,n







    Y










    i




















    =

















    j


    =


    1


















    n




















    a











    i


    j




















    Z










    j


















    ,






    i




    =








    1


    ,




    2


    ,











    ,




    n





    ,因此



    Y

    i

    Y_i







    Y










    i





















    仍服从正态分布,由



    Z

    i

    N

    (

    0

    ,

    1

    )

    Z_i \sim N(0,1)







    Z










    i





























    N


    (


    0


    ,




    1


    )





    可知





    E

    (

    Y

    i

    )

    =

    E

    (

    j

    =

    1

    n

    a

    i

    j

    Z

    j

    )

    =

    j

    =

    1

    n

    a

    i

    j

    E

    (

    Z

    j

    )

    =

    0

    E(Y_i) = E(\sum\limits_{j=1}^na_{ij}Z_j) = \sum\limits_{j=1}^na_{ij}E(Z_j) = 0






    E


    (



    Y










    i


















    )




    =








    E


    (











    j


    =


    1


















    n




















    a











    i


    j




















    Z










    j


















    )




    =

















    j


    =


    1


















    n




















    a











    i


    j



















    E


    (



    Z










    j


















    )




    =








    0








    D

    (

    Y

    i

    )

    =

    D

    (

    j

    =

    1

    n

    a

    i

    j

    Z

    j

    )

    =

    j

    =

    1

    n

    a

    i

    j

    2

    D

    (

    Z

    j

    )

    =

    j

    =

    1

    n

    a

    i

    j

    2

    =

    1

    D(Y_i) = D(\sum\limits_{j=1}^na_{ij}Z_j) = \sum\limits_{j=1}^na_{ij}^2D(Z_j) = \sum\limits_{j=1}^na_{ij}^2=1






    D


    (



    Y










    i


















    )




    =








    D


    (











    j


    =


    1


















    n




















    a











    i


    j




















    Z










    j


















    )




    =

















    j


    =


    1


















    n




















    a











    i


    j









    2


















    D


    (



    Z










    j


















    )




    =

















    j


    =


    1


















    n




















    a











    i


    j









    2




















    =








    1




    又由



    C

    o

    v

    (

    Z

    i

    ,

    Z

    j

    )

    =

    δ

    i

    j

    =

    {

    0

    ,

    i

    j

    1

    ,

    i

    =

    j

    ,

    i

    ,

    j

    =

    1

    ,

    2

    ,


    ,

    n

    Cov(Z_i,Z_j) = \delta_{ij}=\begin{cases}0,\quad i\neq j \\1,\quad i=j\end{cases} \quad ,i,j=1,2,\cdots,n






    C


    o


    v


    (



    Z










    i


















    ,





    Z










    j


















    )




    =









    δ











    i


    j





















    =










    {














    0


    ,






    i







































    =





    j








    1


    ,






    i




    =




    j


























    ,




    i


    ,




    j




    =








    1


    ,




    2


    ,











    ,




    n








    C

    o

    v

    (

    Y

    i

    ,

    Y

    k

    )

    =

    C

    o

    v

    (

    j

    =

    1

    n

    a

    i

    j

    Z

    j

    ,

    l

    =

    1

    n

    a

    k

    l

    Z

    l

    )

    =

    j

    =

    1

    n

    l

    =

    1

    n

    a

    i

    j

    a

    k

    l

    C

    o

    v

    (

    Z

    j

    ,

    Z

    l

    )

    =

    j

    =

    1

    n

    a

    i

    j

    a

    k

    j

    =

    {

    0

    ,

    i

    j

    1

    ,

    i

    =

    j

    (

    )

    \begin{aligned}Cov(Y_i,Y_k) &= Cov(\sum\limits_{j=1}^na_{ij}Z_j,\sum\limits_{l=1}^na_{kl}Z_l)\\&=\sum\limits_{j=1}^n\sum\limits_{l=1}^n a_{ij}a_{kl}Cov(Z_j,Z_l) \\&=\sum\limits_{j=1}^na_{ij}a_{kj} \\&=\begin{cases}0,\quad i\neq j \\1,\quad i=j\end{cases}(正交矩阵性质,各行均是单位向量且两两正交)\end{aligned}
















    C


    o


    v


    (



    Y










    i


















    ,





    Y










    k


















    )















































    =




    C


    o


    v


    (











    j


    =


    1


















    n




















    a











    i


    j




















    Z










    j


















    ,













    l


    =


    1


















    n




















    a











    k


    l




















    Z










    l


















    )












    =













    j


    =


    1


















    n




























    l


    =


    1


















    n




















    a











    i


    j




















    a











    k


    l



















    C


    o


    v


    (



    Z










    j


















    ,





    Z










    l


















    )












    =













    j


    =


    1


















    n




















    a











    i


    j




















    a











    k


    j





























    =






    {














    0


    ,






    i







































    =





    j








    1


    ,






    i




    =




    j
























    (






























































    )






















    由此可知



    Y

    1

    ,

    Y

    2

    ,


    ,

    Y

    n

    Y_1,Y_2,\cdots,Y_n







    Y










    1


















    ,





    Y










    2


















    ,











    ,





    Y










    n





















    两两互不相关。又由于



    n

    n






    n





    维随机变量



    (

    Y

    1

    ,

    Y

    2

    ,


    ,

    Y

    n

    )

    (Y_1,Y_2,\cdots,Y_n)






    (



    Y










    1


















    ,





    Y










    2


















    ,











    ,





    Y










    n


















    )





    是由



    n

    n






    n





    维随机变量



    (

    X

    1

    ,

    X

    2


    ,

    X

    n

    )

    (X_1,X_2,\cdots,X_n)






    (



    X










    1


















    ,





    X










    2






























    ,





    X










    n


















    )





    经线性变换得到,因此



    (

    Y

    1

    ,

    Y

    2

    ,


    ,

    Y

    n

    )

    (Y_1,Y_2,\cdots,Y_n)






    (



    Y










    1


















    ,





    Y










    2


















    ,











    ,





    Y










    n


















    )





    也是



    n

    n






    n





    维正态随机变量,由

    引理3性质4

    可知,



    Y

    1

    ,

    Y

    2

    ,


    ,

    Y

    n

    Y_1,Y_2,\cdots,Y_n







    Y










    1


















    ,





    Y










    2


















    ,











    ,





    Y










    n





















    两两互不相关也即是



    Y

    1

    ,

    Y

    2

    ,


    ,

    Y

    n

    Y_1,Y_2,\cdots,Y_n







    Y










    1


















    ,





    Y










    2


















    ,











    ,





    Y










    n





















    互相独立。前面已经计算出



    E

    (

    Y

    i

    )

    =

    0

    ,

    D

    (

    Y

    i

    )

    =

    1

    E(Y_i)=0,D(Y_i)=1






    E


    (



    Y










    i


















    )




    =








    0


    ,




    D


    (



    Y










    i


















    )




    =








    1





    因此



    Y

    i

    N

    (

    0

    ,

    1

    )

    ,

    i

    =

    1

    ,

    2

    ,


    ,

    n

    .

    Y_i\sim N(0,1),i=1,2,\cdots,n.







    Y










    i





























    N


    (


    0


    ,




    1


    )


    ,




    i




    =








    1


    ,




    2


    ,











    ,




    n


    .








    Y

    1

    =

    j

    =

    1

    n

    a

    1

    j

    Z

    j

    =

    j

    =

    1

    n

    1

    n

    Z

    j

    =

    1

    n

    n

    Z

    =

    n

    Z

    \begin{aligned}Y_1&=\sum\limits_{j=1}^na_{1j}Z_j \\&= \sum\limits_{j=1}^n\frac{1}{\sqrt{n}}Z_j\\&=\frac{1}{\sqrt{n}}*n\overline{Z}\\&=\sqrt{n}\overline{Z}\end{aligned}

















    Y










    1































































    =













    j


    =


    1


















    n




















    a











    1


    j




















    Z










    j




























    =













    j


    =


    1


















    n






































    n




































    1





















    Z










    j




























    =























    n




































    1



























    n










    Z
























    =












    n
































    Z






































    i

    =

    1

    n

    Y

    i

    2

    =

    Y

    T

    Y

    =

    (

    A

    Z

    )

    T

    (

    A

    Z

    )

    =

    Z

    T

    A

    T

    A

    Z

    =

    Z

    T

    Z

    =

    i

    =

    1

    n

    Z

    i

    2

    \begin{aligned}\sum\limits_{i=1}^nY_i^2&=Y^TY=(AZ)^T(AZ)\\&=Z^TA^TAZ = Z^TZ = \sum\limits_{i=1}^nZ_i^2\end{aligned}

























    i


    =


    1


















    n




















    Y










    i








    2



















































    =





    Y










    T









    Y




    =




    (


    A


    Z



    )










    T









    (


    A


    Z


    )












    =





    Z










    T










    A










    T









    A


    Z




    =





    Z










    T









    Z




    =













    i


    =


    1


















    n




















    Z










    i








    2






































    此时有




    (

    n

    1

    )

    S

    2

    σ

    2

    =

    i

    =

    1

    n

    Z

    i

    2

    n

    Z

    2

    =

    i

    =

    1

    n

    Y

    i

    2

    Y

    1

    2

    =

    i

    =

    2

    n

    Y

    i

    2

    \begin{aligned} \frac{(n-1)S^2}{\sigma^2} &=\sum\limits_{i=1}^nZ_i^2-n\overline{Z}^2 \\&=\sum\limits_{i=1}^nY_i^2-Y_1^2\\&=\sum\limits_{i=2}^nY_i^2\end{aligned}




























    σ










    2





















    (


    n









    1


    )



    S










    2


































































    =













    i


    =


    1


















    n




















    Z










    i








    2

























    n











    Z






















    2



















    =













    i


    =


    1


















    n




















    Y










    i








    2


























    Y










    1








    2




























    =













    i


    =


    2


















    n




















    Y










    i








    2





































    由于



    Y

    2

    ,

    Y

    3

    ,


    ,

    Y

    n

    Y_2,Y_3,\cdots,Y_n







    Y










    2


















    ,





    Y










    3


















    ,











    ,





    Y










    n





















    相互独立,且



    Y

    i

    N

    (

    0

    ,

    1

    )

    Y_i\sim N(0,1)







    Y










    i





























    N


    (


    0


    ,




    1


    )





    ,因此




    (

    n

    1

    )

    S

    2

    σ

    2

    =

    i

    =

    2

    n

    Y

    i

    2

    χ

    2

    (

    n

    1

    )

    .

    \frac{(n-1)S^2}{\sigma^2}=\sum\limits_{i=2}^nY_i^2\sim\chi^2(n-1).


















    σ










    2





















    (


    n









    1


    )



    S










    2





























    =

















    i


    =


    2


















    n




















    Y










    i








    2






























    χ










    2









    (


    n













    1


    )


    .





    其次,



    X

    =

    σ

    Z

    +

    μ

    =

    σ

    Y

    1

    n

    +

    μ

    \overline{X} = \sigma\overline{Z}+\mu = \frac{\sigma Y_1}{\sqrt{n}}+\mu














    X
















    =








    σ










    Z
















    +








    μ




    =




























    n






































    σ



    Y










    1







































    +








    μ





    仅跟



    Y

    1

    Y_1







    Y










    1





















    有关,而



    S

    2

    =

    σ

    2

    n

    1

    i

    =

    2

    n

    Y

    i

    2

    S^2=\frac{\sigma^2}{n-1}\sum\limits_{i=2}^nY_i^2







    S










    2











    =




















    n





    1

















    σ










    2







































    i


    =


    2


















    n




















    Y










    i








    2





















    仅依赖于



    Y

    2

    ,

    Y

    3

    ,


    ,

    Y

    n

    Y_2,Y_3,\cdots,Y_n







    Y










    2


















    ,





    Y










    3


















    ,











    ,





    Y










    n





















    ,又因为



    Y

    1

    ,

    Y

    2

    ,


    ,

    Y

    n

    Y_1,Y_2,\cdots,Y_n







    Y










    1


















    ,





    Y










    2


















    ,











    ,





    Y










    n





















    相互独立,因此有



    X

    \overline{X}














    X





















    S

    2

    S^2







    S










    2












    相互独立



定理三





  • X

    1

    ,

    X

    2

    ,


    ,

    X

    n

    X_1,X_2,\cdots,X_n







    X










    1


















    ,





    X










    2


















    ,











    ,





    X










    n





















    是来自正态总体



    N

    (

    μ

    ,

    σ

    2

    )

    N(\mu,\sigma^2)






    N


    (


    μ


    ,





    σ










    2









    )





    的样本,



    X

    ,

    S

    2

    \overline{X},S^2














    X














    ,





    S










    2












    分别是样本均值和样本方差,则有




    X

    μ

    S

    /

    n

    t

    (

    n

    1

    )

    \frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1)

















    S


    /










    n












































    X





















    μ































    t


    (


    n













    1


    )





    证明:

    由定理一可知,



    X

    N

    (

    μ

    ,

    σ

    2

    /

    n

    )

    .

    \overline{X}\sim N(\mu,\sigma^2/n).














    X

























    N


    (


    μ


    ,





    σ










    2









    /


    n


    )


    .




    进行标准化之后有



    X

    μ

    σ

    /

    n

    N

    (

    0

    ,

    1

    )

    .

    \frac{\overline{X}-\mu}{\sigma /\sqrt{n}}\sim N(0,1).


















    σ


    /










    n














































    X

















    μ
































    N


    (


    0


    ,




    1


    )


    .




    由定理二可知,



    (

    n

    1

    )

    S

    2

    σ

    2

    χ

    2

    (

    n

    1

    )

    \frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1)



















    σ










    2























    (


    n





    1


    )



    S










    2








































    χ










    2









    (


    n













    1


    )




    根据



    t

    t






    t





    分布定义有




    X

    μ

    σ

    /

    n

    (

    n

    1

    )

    S

    2

    σ

    2

    (

    n

    1

    )

    =

    X

    μ

    S

    /

    n

    t

    (

    n

    1

    )

    \begin{aligned} \frac{\frac{\overline{X}-\mu}{\sigma/ \sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2(n-1)}}} = \frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1)\end{aligned}
















































    σ










    2









    (


    n





    1


    )
















    (


    n





    1


    )



    S










    2










































































    σ


    /










    n














































    X

















    μ









































    =















    S


    /










    n












































    X





















    μ



























    t


    (


    n









    1


    )






















    证明完毕



定理四





  • X

    1

    ,

    X

    2

    ,


    ,

    X

    n

    1

    X_1,X_2,\cdots,X_{n_1}







    X










    1


















    ,





    X










    2


















    ,











    ,





    X












    n










    1










































    Y

    1

    ,

    Y

    2

    ,


    ,

    Y

    n

    1

    Y_1,Y_2,\cdots,Y_{n_1}







    Y










    1


















    ,





    Y










    2


















    ,











    ,





    Y












    n










    1






































    是来自正态总体



    N

    (

    μ

    1

    ,

    σ

    1

    2

    )

    N(\mu_1,\sigma_1^2)






    N


    (



    μ










    1


















    ,





    σ










    1








    2


















    )









    N

    (

    μ

    2

    ,

    σ

    2

    2

    )

    N(\mu_2,\sigma_2^2)






    N


    (



    μ










    2


















    ,





    σ










    2








    2


















    )





    的样本,且这两个样本 相互独立. 设



    X

    =

    1

    n

    1

    i

    =

    1

    n

    1

    X

    i

    ,

    Y

    =

    1

    n

    2

    i

    =

    1

    n

    2

    Y

    i

    \overline{X}=\frac{1}{n_1}\sum\limits_{i=1}^{n_1}X_i,\overline{Y}=\frac{1}{n_2}\sum\limits_{i=1}^{n_2}Y_i














    X
















    =





















    n










    1
































    1
































    i


    =


    1




















    n










    1





































    X










    i


















    ,












    Y
















    =





















    n










    2
































    1
































    i


    =


    1




















    n










    2





































    Y










    i





















    分别是这两个样本的样本均值;



    S

    1

    2

    =

    1

    n

    1

    1

    i

    =

    1

    n

    1

    (

    X

    i

    X

    )

    2

    ,

    S

    2

    2

    =

    1

    n

    2

    1

    i

    =

    1

    n

    2

    (

    Y

    i

    Y

    )

    2

    S_1^2=\frac{1}{n_1-1}\sum\limits_{i=1}^{n_1}(X_i-\overline{X})^2,S_2^2=\frac{1}{n_2-1}\sum\limits_{i=1}^{n_2}(Y_i-\overline{Y})^2







    S










    1








    2




















    =





















    n










    1





















    1
















    1
































    i


    =


    1




















    n










    1


































    (



    X










    i





































    X















    )










    2









    ,





    S










    2








    2




















    =





















    n










    2





















    1
















    1
































    i


    =


    1




















    n










    2


































    (



    Y










    i





































    Y















    )










    2












    分别是两个样本的样本方差,则有




    1

    0

    S

    1

    2

    /

    S

    2

    2

    σ

    1

    2

    /

    σ

    2

    2

    F

    (

    n

    1

    1

    ,

    n

    2

    1

    )

    1^0\quad \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}\sim F(n_1-1,n_2-1)







    1










    0
























    σ










    1








    2


















    /



    σ










    2








    2

































    S










    1








    2


















    /



    S










    2








    2
















































    F


    (



    n










    1





























    1


    ,





    n










    2





























    1


    )







    2

    0

    2^0\quad







    2










    0


















    σ

    1

    2

    =

    σ

    2

    2

    =

    σ

    2

    \sigma_1^2=\sigma_2^2=\sigma^2







    σ










    1








    2




















    =









    σ










    2








    2




















    =









    σ










    2












    时,




    (

    X

    Y

    )

    (

    μ

    1

    μ

    2

    )

    S

    w

    1

    n

    1

    +

    1

    n

    2

    t

    (

    n

    1

    +

    n

    2

    2

    )

    \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2)


















    S










    w







































    n










    1
































    1























    +

















    n










    2
































    1























































    (










    X





























    Y














    )









    (



    μ










    1


























    μ










    2


















    )































    t


    (



    n










    1




















    +









    n










    2





























    2


    )





    其中



    S

    w

    2

    =

    (

    n

    1

    1

    )

    S

    1

    2

    +

    (

    n

    2

    1

    )

    S

    2

    2

    n

    1

    +

    n

    2

    2

    ,

    S

    w

    =

    S

    w

    2

    S_w^2=\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}, S_w=\sqrt{S_w^2}







    S










    w








    2




















    =





















    n










    1


















    +



    n










    2





















    2
















    (



    n










    1





















    1


    )



    S










    1








    2


















    +


    (



    n










    2





















    1


    )



    S










    2








    2





































    ,





    S










    w




















    =

















    S










    w








    2










































    证明:




    1

    0

    1^0 \quad







    1










    0














    由定理二可知




    (

    n

    1

    1

    )

    S

    1

    2

    σ

    1

    2

    χ

    2

    (

    n

    1

    1

    )

    (

    1

    )

    (

    n

    2

    1

    )

    S

    2

    2

    σ

    2

    2

    χ

    2

    (

    n

    2

    1

    )

    (

    2

    )

    \frac{(n_1-1)S_1^2}{\sigma_1^2}\sim \chi^2(n_1-1) \quad(1) \\\frac{(n_2-1)S_2^2}{\sigma_2^2}\sim \chi^2(n_2-1)\quad(2)


















    σ










    1








    2






























    (



    n










    1

























    1


    )



    S










    1








    2
















































    χ










    2









    (



    n










    1





























    1


    )




    (


    1


    )




















    σ










    2








    2






























    (



    n










    2

























    1


    )



    S










    2








    2
















































    χ










    2









    (



    n










    2





























    1


    )




    (


    2


    )





    此时有




    (

    n

    1

    1

    )

    S

    1

    2

    (

    n

    1

    1

    )

    σ

    1

    2

    /

    (

    n

    2

    1

    )

    S

    2

    2

    (

    n

    2

    1

    )

    σ

    2

    2

    F

    (

    n

    1

    1

    ,

    n

    2

    1

    )

    \frac{(n_1-1)S_1^2}{(n_1-1)\sigma_1^2}\bigg/\frac{(n_2-1)S_2^2}{(n_2-1)\sigma_2^2} \sim F(n_1-1,n_2-1)

















    (



    n










    1

























    1


    )



    σ










    1








    2






























    (



    n










    1

























    1


    )



    S










    1








    2





































    /














    (



    n










    2

























    1


    )



    σ










    2








    2






























    (



    n










    2

























    1


    )



    S










    2








    2















































    F


    (



    n










    1





























    1


    ,





    n










    2





























    1


    )









    S

    1

    2

    /

    S

    2

    2

    σ

    1

    2

    /

    σ

    2

    2

    F

    (

    n

    1

    1

    ,

    n

    2

    1

    )

    \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}\sim F(n_1-1,n_2-1)


















    σ










    1








    2


















    /



    σ










    2








    2































    S










    1








    2


















    /



    S










    2








    2















































    F


    (



    n










    1





























    1


    ,





    n










    2





























    1


    )








    2

    0

    2^0\quad







    2










    0














    由式



    (

    1

    )

    (1)






    (


    1


    )









    (

    2

    )

    (2)






    (


    2


    )





    ,以及



    χ

    2

    \chi^2







    χ










    2












    分布的可加性可知




    (

    n

    1

    1

    )

    S

    1

    2

    σ

    1

    2

    +

    (

    n

    2

    1

    )

    S

    2

    2

    σ

    2

    2

    χ

    2

    (

    n

    1

    +

    n

    2

    2

    )

    \frac{(n_1-1)S_1^2}{\sigma_1^2}+\frac{(n_2-1)S_2^2}{\sigma_2^2} 服从\chi^2(n_1+n_2-2)


















    σ










    1








    2






























    (



    n










    1

























    1


    )



    S










    1








    2






































    +




















    σ










    2








    2






























    (



    n










    2

























    1


    )



    S










    2








    2











































    χ










    2









    (



    n










    1




















    +









    n










    2





























    2


    )









    σ

    1

    2

    =

    σ

    2

    2

    =

    σ

    2

    \sigma_1^2=\sigma_2^2=\sigma^2







    σ










    1








    2




















    =









    σ










    2








    2




















    =









    σ










    2












    可知,




    (

    n

    1

    1

    )

    S

    1

    2

    +

    (

    n

    2

    1

    )

    S

    2

    2

    σ

    2

    χ

    2

    (

    n

    1

    +

    n

    2

    2

    )

    (

    3

    )

    \frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{\sigma^2} \sim \chi^2(n_1+n_2-2)\quad (3)


















    σ










    2





















    (



    n










    1

























    1


    )



    S










    1








    2




















    +




    (



    n










    2

























    1


    )



    S










    2








    2
















































    χ










    2









    (



    n










    1




















    +









    n










    2





























    2


    )




    (


    3


    )





    由定理一可知



    X

    N

    (

    μ

    1

    ,

    σ

    2

    /

    n

    )

    ,

    Y

    N

    (

    μ

    2

    ,

    σ

    2

    /

    n

    )

    .

    \overline{X}\sim N(\mu_1,\sigma^2/n),\overline{Y}\sim N(\mu_2,\sigma^2/n).














    X

























    N


    (



    μ










    1


















    ,





    σ










    2









    /


    n


    )


    ,












    Y

























    N


    (



    μ










    2


















    ,





    σ










    2









    /


    n


    )


    .




    因此



    X

    Y

    N

    (

    μ

    1

    μ

    2

    ,

    σ

    2

    /

    n

    1

    +

    σ

    2

    /

    n

    2

    )

    \overline{X}-\overline{Y}\sim N(\mu_1-\mu_2,\sigma^2/n_1+\sigma^2/n_2)














    X

































    Y

























    N


    (



    μ










    1






























    μ










    2


















    ,





    σ










    2









    /



    n










    1




















    +









    σ










    2









    /



    n










    2


















    )





    ,对其进行标准化有





    (

    X

    Y

    )

    (

    μ

    1

    μ

    2

    )

    σ

    2

    /

    n

    1

    +

    σ

    2

    /

    n

    2

    N

    (

    0

    ,

    1

    )

    (

    4

    )

    \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\sigma^2/n_1+\sigma^2/n_2}} \sim N(0,1)\quad (4)


























    σ










    2









    /



    n










    1




















    +





    σ










    2









    /



    n










    2




















































    (










    X





























    Y














    )









    (



    μ










    1


























    μ










    2


















    )































    N


    (


    0


    ,




    1


    )




    (


    4


    )





    由式



    (

    3

    )

    (

    4

    )

    (3)、(4)






    (


    3


    )





    (


    4


    )





    可知




    (

    X

    Y

    )

    (

    μ

    1

    μ

    2

    )

    σ

    2

    /

    n

    1

    +

    σ

    2

    /

    n

    2

    /

    (

    n

    1

    1

    )

    S

    1

    2

    +

    (

    n

    2

    1

    )

    S

    2

    2

    σ

    2

    (

    n

    1

    +

    n

    2

    2

    )

    t

    (

    n

    1

    +

    n

    2

    2

    )

    \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\sigma^2/n_1+\sigma^2/n_2}}\bigg/\sqrt{\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{\sigma^2(n_1+n_2-2)}} \sim t(n_1+n_2-2)


























    σ










    2









    /



    n










    1




















    +





    σ










    2









    /



    n










    2




















































    (










    X





























    Y














    )









    (



    μ










    1


























    μ










    2


















    )





















    /























    σ










    2









    (



    n










    1




















    +





    n










    2

























    2


    )














    (



    n










    1

























    1


    )



    S










    1








    2




















    +




    (



    n










    2

























    1


    )



    S










    2








    2





































































    t


    (



    n










    1




















    +









    n










    2





























    2


    )










    (

    X

    Y

    )

    (

    μ

    1

    μ

    2

    )

    S

    w

    1

    n

    1

    +

    1

    n

    2

    t

    (

    n

    1

    +

    n

    2

    2

    )

    \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2)


















    S










    w







































    n










    1
































    1























    +

















    n










    2
































    1























































    (










    X





























    Y














    )









    (



    μ










    1


























    μ










    2


















    )































    t


    (



    n










    1




















    +









    n










    2





























    2


    )





    证明完毕



版权声明:本文为SpiritedAway1106原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。