np中维度的理解和np.expand_dims

  • Post author:
  • Post category:其他


np.expand_dims的作用是通过在指定位置插入新的轴来扩展数组形状,

函数格式如下:

np.expand_dims(array, axis)

当axis=0时,我们从最外面的括号开始看,axis=0是最高维度,axis=1就是从左至右第二个括号所包含的内容,以此类推。

import numpy as np
a = np.array([[1, 2, 3], [4, 5, 6]])
print(a.shape)
a.shape(2, 3)

(1)当axis = 0 时,我们从最高维扩展数组(增加它的维度),就给它在最外面再添个括号就可以啦,即yoz平面。所以,

b = np.expand_dims(a, axis=0) 
b = [[[1, 2, 3], [4, 5, 6]]]
b.shape = (1, 2, 3)

shape(1, 2, 3)表示从左至右(从高维到低维:axis = 0 , 1, 2)所包含内容的情况,axis = 0(最外面的括号)只包含1个内容:[[1, 2, 3], [4, 5, 6]]; axis = 1(第二个括号)里包含2个内容:[1, 2, 3], [4, 5, 6]。axis = 3(第三个括号)里包含3个内容:1,2,3;或4,5,6

(2)当axis = 1 时,就是给第二个括号再加一个括号啦,即xoz平面

c = np.expand_dims(a, axis=1) 
c = [[[1, 2, 3]], [[4, 5, 6]]]
c.shape = (2, 1, 3)

(3)当axis = 2 时,就是给最里面的数加一个括号,即xoy平面

d = np.expand_dims(a, axis=2) 
d = [[[1], [2], [3]], [[4], [5], [6]]]
d.shape = (2, 3, 1)



版权声明:本文为wezard95原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。