HashMap源码前前后后看了好几次,也和同事分享过好几次,每次都有新的收获。
分享也是一种提高!
本文首写于个人云笔记(点击访问),经多次修改,短期内不会有重大修改了,现发于此,有任何问题欢迎交流指正。
本文最初借鉴于http://www.cnblogs.com/hzmark/archive/2012/12/24/HashMap.html,其基于jdk1.6,自己分析jdk1.8后,发现有很大的不同,遂记录于此。
Java最基本的数据结构有数组和链表。数组的特点是空间连续(大小固定)、寻址迅速,但是插入和删除时需要移动元素,所以查询快,增加删除慢。链表恰好相反,可动态增加或减少空间以适应新增和删除元素,但查找时只能顺着一个个节点查找,所以增加删除快,查找慢。有没有一种结构综合了数组和链表的优点呢?当然有,那就是哈希表(虽说是综合优点,但实际上查找肯定没有数组快,插入删除没有链表快,一种折中的方式吧)。一般采用拉链法实现哈希表。
JDK1.6中HashMap采用的是位桶+链表的方式,即我们常说的散列链表的方式;JDK1.8中采用的是位桶+链表/红黑树的方式,也是非线程安全的。当某个位桶的链表的长度达到某个阀值的时候,这个链表就将转换成红黑树。
1、HashMap的定义
1.1 所属包:package java.util;
1.2 导入包:
import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.Serializable;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.Function;
1.3定义:
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {}
2、HashMap的部分属性
private static final long serialVersionUID = 362498820763181265L;
//The default initial capacity – MUST be a power of two.
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; //jdk1.6直接写16,这效率更快??
// The maximum capacity,MUST be a power of two <= 1<<30.
static final int MAXIMUM_CAPACITY = 1 << 30; // 2的30次方
static final float DEFAULT_LOAD_FACTOR = 0.75f; //填充比,装载因子
/**(jdk1.8新加)
* The bin count threshold for using a tree rather than list for a
* bin.当add一个元素到某个位桶,其链表长度达到8时将链表转换为红黑树.
* 2< value<=8 时to mesh with assumptions in tree removal about conversion back to plain bins upon shrinkage.
*链表转为树,binCount>=TREEIFY_THRESHOLD-1,-1 for 1st。
*/ //当某个桶中的键值对数量大于8个【9个起】,且桶数量大于等于64,则将底层实现从链表转为红黑树
// 如果桶中的键值对达到该阀值,则检测桶数量
static final int TREEIFY_THRESHOLD= 8; //jdk1.8新加
/**
TreeNode的
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
if
(lc <= UNTREEIFY_THRESHOLD)
//太小则转为链表
tab[index] = loHead.untreeify(map);
static final int UNTREEIFY_THRESHOLD = 6; //jdk1.8新加
/**
链表转树时,if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
static final int MIN_TREEIFY_CAPACITY = 64; //jdk1.8新加
/* —————- Fields ————– */
// jdk1.6 为 transient Entry[] table;
transient Node<K,V>[] table; //存储元素(位桶)的数组,length power of two
transient Set<Map.Entry<K,V>> entrySet;
transient int size; // key-value对,实际容量
transient int modCount; //结构改变次数,fast-fail机制
int threshold; // 新的扩容resize临界值,当实际大小(容量*填充比)大于临界值时,会进行2倍扩容
final float loadFactor;
Node 内部类
是HashMap内部类(jdk1.6就是Entry),继承自 Map.Entry这个内部接口,它就是存储一对映射关系的最小单元,也就是说key,value实际存储在Node中。与1.6相比,修改了 hashCode()、equals()方法【直接调用Object的hashCode、equals方法,而不是copy代码过来】,去掉了toString()、recordAccess(HashMap<K,V> m)【the value in an entry is overwritten时调用】、recordRemoval(HashMap<K,V> m)【remove entry时调用】方法。【键值对】
static class Node<K,V>implements Map.Entry<K,V> {
final int hash; //结点的哈希值,不可变
final K key;
V value;
Node<K,V> next; //指向下一个节点
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
// 由直接实现 变为 调用Object的HashCode,实际是一样的
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
} //按位异或^不同为真,数a两次异或同一个数b(a=a^b^b)仍然为原值a。
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
returnoldValue;
} // 优化逻辑
public final boolean equals(Object o) {//改为调用Object的equals
if (o == this) //内存地址(1.8新增)
return true;
if (o instanceof Map.Entry) {//1.6中!(instanceof)返回false
Map.Entry<?,?> e = (Map.Entry<?,?>)o; //新加<?,?>泛型
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
/* jdk 1.6 Entry 的equals方法
public final boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
} */
// 新增的红黑树,继承LinkedHashMap
.Entry<K,V>
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion,节点的前一个节点
boolean red; //true表示红节点,false表示黑节点
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
/**
* Returns root of tree containing this node.获取红黑树的根
*/
final TreeNode<K,V> root() {
for (TreeNode<K,V> r=this, p;;){//p定义,int a=1,b;不能直接输出b(未初始化)
if ((p = r.parent) == null) //若改为类似并查集的路径压缩(结构改变)
return r;
r = p;
}
}
/**
* Ensures that the given root is the first node of its bin.
*/ //确保root是桶中的第一个元素,将root移到桶中的第一个【平衡思想】
static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {}
/**
* Finds the node starting at root p with the given hash and key.
* The kc argument caches comparableClassFor(key) upon first use
* comparing keys.
*///查找hash为h,key为k的节点
final TreeNode<K,V> find(int h, Object k, Class<?> kc) { // 详见get相关
TreeNode<K,V> p = this; …… }
/**
* Calls find for root node.
*/ //获取树节点,通过根节点查找
final TreeNode<K,V> getTreeNode(int h, Object k) { // 详见get相关
return ((parent != null) ? root() : this).find(h, k, null);
}
/**
* Tie-breaking utility for ordering insertions when equal
* hashCodes and non-comparable. We don't require a total
* order, just a consistent insertion rule to maintain
* equivalence across rebalancings. Tie-breaking further than
* necessary simplifies testing a bit.
*/ //比较2个对象的大小
static int tieBreakOrder(Object a, Object b) {}
/**
* Forms tree of the nodes linked from this node.
* @return root of tree
*/ //将链表转为二叉树
finalvoid treeify(Node<K,V>[] tab) {} //根节点设置为黑色
/**
* Returns a list of non-TreeNodes replacing those linked from
* this node.
*/ //将二叉树转为链表
final Node<K,V> untreeify(HashMap<K,V> map) {}
/**
* Tree version of putVal.
*/ //添加一个键值对
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
inth, K k, V v) {}
/**
* Removes the given node, that must be present before this call.
* This is messier than typical red-black deletion code because we
* cannot swap the contents of an interior node with a leaf
* successor that is pinned by "next" pointers that are accessible
* independently during traversal. So instead we swap the tree
* linkages. If the current tree appears to have too few nodes,
* the bin is converted back to a plain bin. (The test triggers
* somewhere between 2 and 6 nodes, depending on tree structure).
*/
final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
boolean movable) {}
/**
* Splits nodes in a tree bin into lower and upper tree bins,
* or untreeifies if now too small. Called only from resize;
* see above discussion about split bits and indices.
*
* @param map the map
* @param tab the table for recording bin heads
* @param index the index of the table being split
* @param bit the bit of hash to split on
*/ //将结点太多的桶分割
finalvoid split(HashMap<K,V> map, Node<K,V>[] tab, intindex, intbit) {}
/* --------------------------------------------------*/
// Red-black tree methods, all adapted from CLR
//左旋转
static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
TreeNode<K,V> p) {}
//右旋转
static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
TreeNode<K,V> p) {}
//保证插入后平衡,共5种插入情况
static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
TreeNode<K,V> x) {}
//删除后调整平衡 ,共6种删除情况
static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
TreeNode<K,V> x) {}
/**
* Recursive invariant check
*/ //检测是否符合红黑树
static <K,V> boolean checkInvariants(TreeNode<K,V> t) {}
}
static final int hash(Object key) { // 计算key的hash值hash(key) int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); } |
n = tab.length |
table的下标【bucket的index】:(n – 1) & hash |
由上可知:
int index = (hash & 0x7FFFFFFF) % tab.length;
3、HashMap的4种构造方法
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
this.loadFactor = loadFactor;
this.threshold=tableSizeFor(initialCapacity);
}
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; //all default即16;0.75
}
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
public HashMap(Map<? extends K, ? extends V> m) { // 参数本就是Map
this.loadFactor = DEFAULT_LOAD_FACTOR; // 0.75
putMapEntries(m, false); // 仅putAll时传参为true
}
putMapEntries
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0) {
if (table == null) {// pre-size
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY); // 取较小值
if (t > threshold) // t 大于扩容临界值
threshold = tableSizeFor(t);
}
else if (s > threshold)
resize();
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict); //HashMap核心方法,后讲
}
}
}
// 经程序测试:结果为>=cap的最小2的自然数幂(64-》64;65-》128) static final int tableSizeFor(int cap) { //计算下次需要调整大小的扩容resize临界值 int n = cap – 1; n |= n >>> 1; // >>>“类似于”除以2,高位补0;|=(有1为1) n |= n >>> 2; // int–4byte–32bit,共32位 n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; // 至此后每位均为1,00001111 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; }
|
证明: n=96=0110 0000(暂已8位为例,事实上32位) n>>>1使1位为0,若n首位为1,则结果为1,若为0,则忽略;确保首位有值时结果为1;至此首位完毕 0110 0000 |=0011 0000》0111 0000》112 n>>>2使新的n前2位为0,0111 0000|=0011 1100》0111 1100》124 1+2+4+8+16=31 01100000 1 00110000 = 01110000 确保1、2位为1,所以接下来移2位 2 00011100 = 01111100 确保3、4位为1(此时1-4位均为1),所以接下来移4位 4 00000111(1) = 01111111 以此类推 |
while (capacity < initialCapacity)
capacity <<= 1。
length为2的整数幂保证了length – 1 最后一位(二进制表示)为1,从而保证了索引位置index即
(
hash &
length
-1)的最后一位同时有为0和为1的可能性,保证了散列的均匀性。反过来讲,若length为奇数,length-1最后一位为0,这样与h按位与【同1为1】
的最后一位肯定为0,即索引位置肯定是偶数,这样数组的奇数位置全部没有放置元素,浪费了大量空间。
简而言之:length为2的幂保证了按位与最后一位的有效性,使哈希表散列更均匀。
来看一下上面调用的resize()方法,这也是HashMap中一个非常重要的方法。
// Initializes or doubles table size,两倍扩容并初始化table
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0; // 新容量,新阀值
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab; //到达极限,无法扩容
}
else if((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold阀值
}
// oldCap=0 ,oldThr>0,threshold(新的扩容resize临界值)
else if (oldThr > 0)
newCap = oldThr; //新容量=旧阀值(扩容临界值)
else { // oldCap=0 ,oldThr=0,调用默认值来初始化
newCap = DEFAULT_INITIAL_CAPACITY;
newThr=(int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr== 0) { //新阀值为0,则需要计算新的阀值
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?(int)ft : Integer.MAX_VALUE);
}
threshold = newThr; //设置新的阀值
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; //创建新的桶
table = newTab;
// table初始化,bucket copy到新bucket,分链表和红黑树
if (oldTab != null) { // 不为空则挨个copy,影响效率!!!
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) { //先赋值再判断
oldTab[j] = null; //置null,主动GC
//如果该桶只有一个元素,重新计算桶位,则直接赋到新的桶里面
if (e.next == null)
//1.6的indexFor,计算key;tableSizeFor性能优化
newTab[e.hash &(newCap - 1)]= e; //hash&(length-1)
else if (e instanceof TreeNode) // 红黑树
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { //链表,preserve order保持顺序
//一个桶中有多个元素,遍历将它们移到新的bucket或原bucket
Node<K,V> loHead = null,loTail = null;//lo原bucket的链表指针
Node<K,V> hiHead = null, hiTail = null;//hi新bucket的链表指针
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {//还放在原来的桶
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e; //更新尾指针
}
else {//放在新桶
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null); //
if (loTail != null) { //原bucket位置的尾指针不为空(即还有node)
loTail.next = null; //链表最后得有个null
newTab[j] = loHead;//链表头指针放在新桶的相同下标(j)处
}
if (hiTail != null) { //放在桶 j+oldCap
hiTail.next = null;
newTab[j + oldCap] = hiHead;//j+oldCap见下
}
}
}
}
}
return newTab;
}
这里详细解释一下【
resize】时【链表】的变化
:
table的下标【bucket的index】由(
n
– 1) &
hash计算
②
、假设我们length从16resize到32(以下仅写出8位,实际32位),
hash(key)是不变的。
③
、新bucket下标:(2n – 1) & hash(key),
由于是&操作,同1为1;hash(key)不变;2n-1在原来n-1的基础上仅最高位0变1;
、so,HashMap在Resize时,只需看(新)
n-1最高位对应的hash(key)位是0还是1即可,0则位置不变,1则位置变为原位置+oldCap。
⑤
、如何确认(新)n-1最高位对应的hash(key)位是0还是1呢?源码给出了很巧妙的方式(e.hash & oldCap):e即Node,由put和Node构造函数相关源码可知,e.hash即为hash(key);oldCap为0001 0000(仅最高位为1);
4、HashMap的方法实现
public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } |
// 检测指定的key对应的value是否为null,如果为null,则用新value代替原来的null。 @Override public V putIfAbsent(K key, V value) { return putVal(hash(key), key, value, true, true); } |
核心方法:
V
putVal
(
hash
,
key
,
value
,
onlyIfAbsent
,
evict
)
* @param onlyIfAbsent if true, don't change existing value //
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)//table空||length为0
n = (tab = resize()).length; // 分配空间,初始化
if ((p = tab[i = (n - 1) & hash]) == null)//hash所在位置(第i个桶)为null,直接put
tab[i] = newNode(hash, key, value, null);
else {//tab[i]有元素,则需要遍历结点后再添加
Node<K,V> e; K k;
// hash、key均等,说明待插入元素和第一个元素相等,直接更新
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode) //红黑树冲突插入
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else{ // 链表
for (int binCount = 0; ; ++binCount){ //死循环,直到break
if ((e = p.next) == null) { //表尾仍没有key相同节点,新建节点
p.next = newNode(hash, key, value, null);
//若链表数量大于阀值8【9个】,则调用treeifyBin方法,仅当tab.length大于64才将链表改为红黑树
// 如果tab.length<64或table=null,则重构一下链表
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash); //binCount>=9则链表转树
break; // 退出循环
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break; // hash、key均相等,说明此时的节点==待插入节点,更新
p = e; //更新p指向下一个节点
}
}
//当前节点e = p.next不为null,即链表中原本存在了相同key,则返回oldValue
if (e != null) {// existing mapping for key
V oldValue = e.value;
//onlyIfAbsent值为false,参数主要决定当该键已经存在时,是否执行替换
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e); //调用linkedHashMap,move node to last
return oldValue;
}
}
++modCount;
if (++size > threshold) //++size后再检测是否到了阀值
resize();
afterNodeInsertion(evict);//调用linkedHashMap,true则possibly remove eldest
return null; // 原hashMap中不存在相同key的键值对,则在插入键值对后,返回null。
}
/**
* Replaces all linked nodes in bin at index for given hash unless
* table is too small, in which case resizes instead.
// MIN_TREEIFY_CAPACITY=64.
// tab.length 为2的幂,表示容量,不是size。
*/ //当桶中链表的数量>=9的时候,底层则改为红黑树实现
final void treeifyBin(Node<K,V>[] tab, inthash) {
intn, index; Node<K,V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
// For treeifyBin
TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
return new TreeNode<>(p.hash, p.key, p.value, next);
}
// 链节点替换为树
put(K key, V value)的逻辑:
- 判断键值对数组tab[]是否为空或为null,是则resize();
- 根据键值key的hashCode()计算hash值得到当前Node的索引i,如果tab[i]==null【没碰撞】,直接新建节点添加,否则【碰撞】转入3
- 判断当前数组中处理hash冲突的方式为红黑树还是链表(check第一个节点类型即可),分别处理。【①是红黑树则按红黑树逻辑插入;②是链表,则遍历链表,看是否有key相同的节点;③有则更新value值,没有则新建节点,此时若链表数量大于阀值8【9个】,则调用treeifyBin方法(此方法先判断table是否为null或tab.length小于64,是则执行resize操作,否则才将链表改为红黑树)。】
- 如果size+1> threshold则resize。
public void putAll(Map<? extends K, ? extends V> m) { putMapEntries(m, true); // 详见构造方法,仅putAll参数为true } |
Note:
utAll可以合并map,如果key重复,则用新值替换就值(相见Study代码)。
2)Remove、clear
publicV remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ? null:e.value;
}
@Override
public boolean remove(Object key, Object value) {
return removeNode(hash(key), key, value, true, true) != null;
}
/**
* Implements Map.remove and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to match if matchValue, else ignored
* @param matchValue if true only remove if value is equal
* @param movable if false do not move other nodes while removing
仅HashIterator的remove方法为false
* @return the node, or null if none
*/
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; intn, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node); // 空方法??
return node;
}
}
return null;
}
// for循环,挨个置为null,GC
public void clear() {
Node<K,V>[] tab;
modCount++;
if ((tab = table) != null && size > 0) {
size = 0;
for (int i = 0; i < tab.length; ++i)
tab[i] = null;
}
}
Tip:
NullPointerException。
3)迭代方式、迭代时如何正确Remove
abstract
class
HashIterator
{};
public final void remove() {
Node<K,V> p = current;
if (p == null)
thrownew IllegalStateException();
if (modCount != expectedModCount)
thrownew ConcurrentModificationException();
current = null;
K key = p.key;
removeNode(hash(key), key, null, false, false);
expectedModCount = modCount; //同步expectedModCount和modCount的值
}
② 定义迭代器
EntryIterator
、KeyIterator 、KeyIterator
final class EntryIterator extendsHashIterator
implementsIterator<Map.Entry<K,V>> {
publicfinal Map.Entry<K,V> next() { return nextNode(); }
}
③
final
class
EntrySet
extends
AbstractSet<Map.Entry<K,V>> {……
EntryIterator……
}
Values类似。
for (Entry<Object, Object> entry : map.entrySet()) {
System.out.println(entry.getKey());
// entry.remove(); // error
}
// jdk1.8 lambda迭代,key、value缺一不可
map.forEach((key, value) -> System.out.println(key + "==" + value));
Iterator<Entry<Object, Object>> it = map.entrySet().iterator();
while (it.hasNext()) {
Entry<Object, Object> entry = it.next();
Integer key = (Integer) entry.getKey();
if (key % 2 == 0) {
System.out.println("Delete key:" + key);
it.remove();
System.out.println("The key " + +key + " was deleted");
}
}
发散:
1、如果是遍历过程中增加或修改数据呢?
增加或修改数据只能通过Map的put方法实现,在遍历过程中修改数据可以,但如果增加新key就会在下次循环时抛异常,因为在添加新key时modCount也会自增。
2、有些集合类也有同样的遍历问题,如ArrayList,通过Iterator方式可正确遍历完成remove操作,直接调用list的remove方法就会抛异常。
3、jdk为什么允许通过iterator进行remove操作?
HashMap和keySet的remove方法都可以通过传递key参数删除任意的元素,而iterator只能删除当前元素(current)【movable为false】,一旦删除的元素是iterator对象中next所正在引用的,如果没有通过modCount、 expectedModCount的比较实现快速失败抛出异常,下次循环该元素将成为current指向,此时iterator就遍历了一个已移除的过期数据。ConcurrentModificationException是RuntimeException,不要在客户端捕获它。如果发生此异常,说明程序代码的编写有问题,应该仔细检查代码而不是在catch中忽略它。
Iterator自身的remove()方法会自动同步expectedModCount和modCount的值(见上源码)。确保遍历可靠的原则是只在一个线程中使用这个集合,或者在多线程中对遍历代码进行同步。
4)get、contains相关
public V get(Object key) { // 返回value或null
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
// 指定key不存在则返回 defaultValue
@Override
public V getOrDefault(Object key, V defaultValue) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
}
public boolean containsKey(Object key) {
return getNode(hash(key), key) != null;
}
// 存在指定(1或多个)value即返回true
public boolean containsValue(Object value) {
Node<K,V>[] tab; V v;
if ((tab = table) != null && size > 0) {
for (inti = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
if ((v = e.value) == value ||
(value != null && value.equals(v)))
return true;
}
}
}
returnfalse;
}
get相关的核心方法:
final Node<K,V> getNode(int hash, Object key) { // 返回Node or null
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) { //(n-1)&hash位置不为null
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
if (first instanceof TreeNode) //遍历红黑树,得到节点值
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do { //遍历链表,得到节点值,通过hash和equals(key)确认所查找元素。
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
// Calls find for root node.
final TreeNode<K,V> getTreeNode(int h, Object k) { // k即key
return ((parent != null) ? root() : this).find(h, k, null);
}
/**
* Finds the node starting at root p with the given hash and key.
* The kc argument caches comparableClassFor(key) upon first use
* comparing keys.
*/ // getTreeNode核心方法
final TreeNode<K,V> find(int h, Object k, Class<?> kc) { // k即key,kc为null
TreeNode<K,V> p = this;
do {
int ph, dir; K pk;
TreeNode<K,V> pl = p.left, pr = p.right, q;
if ((ph = p.hash) > h) // ph存当前节点hash
p = pl;
elseif (ph < h) // 所查hash比当前节点hash大
p = pr; // 查右子树
elseif ((pk = p.key) == k || (k != null && k.equals(pk)))
return p; // hash、key均相同,【找到了!】返回当前节点
elseif (pl == null) // hash等,key不等,且当前节点的左节点null
p = pr; // 查右子树
elseif (pr == null)
p = pl;
// get->getTreeNode传递的kc为null。||逻辑或,短路运算,有真即可
// false || (false && ??)
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
else if ((q = pr.find(h, k, kc)) != null)
return q; //通过右节点查找???
else
p = pl;
} while (p != null);
return null;
}
看一下hashMap中的comparableClassFor的解释及部分代码:
// Returns x's Class if it is of the form "class C implements Comparable<C>", else null.
// x实现Comparable接口则返回x的类型,否则返回null。
static Class<?> comparableClassFor(Object x) {
if (xinstanceof Comparable) {
……
if ((c = x.getClass()) == String.class) // bypass checks
returnc;
if ((ts = c.getGenericInterfaces()) != null) {
……
}
}
}
returnnull;
}
//Returns k.compareTo(x) if x matches kc (k's screened comparable class), else 0// 暂未理解透彻
@SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
static int compareComparables(Class<?> kc, Object k, Object x) { // x即pk
return (x == null || x.getClass() != kc ? 0 :
((Comparable)k).compareTo(x)); // 待查k与当前k(x)比较
}
V get(Object key):
hash(key)如下
】
static final int hash(Object key) {
inth;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
Tip:
// 将指定key对应的value替换成新value。如果key不存在,返回null。
@Override
publicV replace(K key, V value) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) != null) {
V oldValue = e.value;
e.value = value;
afterNodeAccess(e);
return oldValue;
}
return null;
}
// 仅当指定key的value为oldValue时,用newValue替换oldValue
@Override
public boolean replace(K key, V oldValue, V newValue) {
Node<K,V> e; V v;
if ((e = getNode(hash(key), key)) != null &&
((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
e.value = newValue;
afterNodeAccess(e);
returntrue;
}
returnfalse;
}
// function? lambda,详见study代码
//计算结果作为key-value对的value值
@Override
publicvoidreplaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
Node<K,V>[] tab;
if (function == null)
thrownewNullPointerException();
if (size > 0 && (tab = table) != null) {
intmc = modCount;
for (inti = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
e.value = function.apply(e.key, e.value);
}
}
if (modCount != mc)
thrownew ConcurrentModificationException();
}
}
map.replaceAll((key, value) -> {// 其他用法???
if ((int) key > 6) {
value = 99;
}
returnvalue; // value改变,返回value
});
// 将所有key>6的value置为99
toString(): 返回格式如{null=1, 2=8, 3=7, 9=8}或{ }。
return size。
return size == 0。
// Callbacks to allow LinkedHashMap post-actions
void afterNodeAccess(Node<K,V> p) { }
void afterNodeInsertion(booleanevict) { }
void afterNodeRemoval(Node<K,V> p) { }
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> 。get性能O(n)–>O(lgN)
减少不必要的内部函数调用
部分源码注释翻译:
- 基于map接口;
- key、value允许空(仅允许一个key为null);
- 和HashTable类似,除了非同步和允许null;
- 无序,顺序可能变;
- get、put效率O(1),迭代器与number of buckets、size相关(所以initial很重要);如果迭代性能很重要,则不要将初始容量设置得太高(或将加载因子设置得太低);
- capacity:buckets的大小,table被create时便实实在在的存在;
- number of entries达到load factor*capacity便rehashed,approximately(大约)2倍buchets;
- load factor (.75)是个时间和空间的折衷,higher–>减少空间开销,增加查询开销(包括get、put);
- 非同步,若结构改变(add、delete,不包括修改value),必须在外部同步;考虑synchronizedMap,Map m = Collections.synchronizedMap(new HashMap(…));
- 迭代时remove报异常ConcurrentModificationException,不能写一个依赖他正确性的程序;
- 链表转红黑树后,若树变短,会恢复为链表。
基于jdk1.8的HashMap源码学习笔记:http://www.cnblogs.com/ToBeAProgrammer/p/4787761.html