4 卷积的拉普拉斯变换

  • Post author:
  • Post category:其他


卷积的拉普拉斯变换

系统输入的拉普拉斯变换



X

(

t

)

X(t)






X


(


t


)





乘以传递函数



H

(

s

)

H(s)






H


(


s


)





等于系统输出的拉普拉斯变换



Y

(

s

)

Y(s)






Y


(


s


)






在这里插入图片描述



Laplace transform





X

(

s

)

=

L

[

X

(

t

)

]

=

0

X

(

t

)

e

s

t

d

t

X(s) = L[X(t)]=\int_{0}^{\infty} X(t) e^{-st} dt






X


(


s


)




=








L


[


X


(


t


)


]




=





















0
































X


(


t


)



e














s


t










d


t







Convolution





x

(

t

)

g

(

t

)

=

0

τ

x

(

τ

)

g

(

t

τ

)

d

τ

x(t) * g(t) = \int_0^{\tau} x(\tau) g(t-\tau) d \tau






x


(


t


)













g


(


t


)




=




















0









τ





















x


(


τ


)


g


(


t













τ


)


d


τ






证明:




L

[

x

(

t

)

g

(

t

)

]

=

X

(

s

)

G

(

s

)

L[x(t) * g(t)]=X(s)G(s)






L


[


x


(


t


)













g


(


t


)


]




=








X


(


s


)


G


(


s


)








L

[

x

(

t

)

g

(

t

)

]

=

0

0

t

x

(

τ

)

g

(

t

τ

)

d

τ
  

e

s

t

d

t

=

0

τ

x

(

τ

)

g

(

t

τ

)
  

e

s

t

d

t
  

d

τ

:

t

τ

=

u

t

=

u

+

τ

d

t

=

d

u

+

d

τ

=

d

u

t

[

τ

,

)

u

=

t

τ

[

0

,

)

=

0

0

x

(

τ

)

g

(

u

)

e

s

(

u

+

τ

)

d

u
  

d

τ

=

0

x

(

τ

)

e

s

τ

d

τ

0

g

(

u

)

e

s

u

d

u

=

X

(

s

)

G

(

s

)

\begin{aligned} L[x(t)*g(t)] &=\int_{0}^{\infty} \int_0^{t} x(\tau) g(t-\tau) d \tau \; e^{-st} dt \\ &=\int_{0}^{\infty} \int_{\tau}^{\infty} x(\tau) g(t-\tau) \; e^{-st} dt \;d \tau \\ & 令: t-\tau = u \quad t=u+\tau \quad dt=du+d\tau=du \\ &t\in[\tau,\infty) \Rightarrow u=t-\tau \in [0,\infty) \\ &=\int_0^{\infty} \int_0^{\infty} x(\tau)g(u) e^{-s(u+\tau)}du\;d\tau \\ &=\int_0^{\infty}x(\tau)e^{-s\tau}d\tau \int_0^{\infty}g(u)e^{-su}du\\ &=X(s)G(s) \end{aligned}
















L


[


x


(


t


)









g


(


t


)


]

































































=

















0












































0









t





















x


(


τ


)


g


(


t









τ


)


d


τ





e














s


t










d


t












=

















0













































τ
































x


(


τ


)


g


(


t









τ


)





e














s


t










d


t




d


τ















:




t









τ




=




u




t




=




u




+




τ




d


t




=




d


u




+




d


τ




=




d


u










t









[


τ


,







)









u




=




t









τ









[


0


,







)












=
















0











































0































x


(


τ


)


g


(


u


)



e














s


(


u


+


τ


)










d


u




d


τ












=
















0































x


(


τ


)



e














s


τ










d


τ
















0































g


(


u


)



e














s


u










d


u












=




X


(


s


)


G


(


s


)






















在这里插入图片描述


结论:






L

(

x

(

t

)

g

(

t

)

)

=

L

[

X

(

t

)

]

L

(

G

(

t

)

)

=

X

(

s

)

G

(

s

)

L(x(t)*g(t))=L[X(t)]L(G(t))=X(s)G(s)






L


(


x


(


t


)













g


(


t


)


)




=








L


[


X


(


t


)


]


L


(


G


(


t


)


)




=








X


(


s


)


G


(


s


)





原视频:

https://www.bilibili.com/video/av26446618



版权声明:本文为qq_28404829原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。