[剑指-Offer] 53. I. 在排序数组中查找数字 I 及 II. 0~n-1中缺失的数字(二分法、代码优化、巧妙解法)

  • Post author:
  • Post category:其他




1. 题目来源

链接:

I. 在排序数组中查找数字 I


链接:

II. 0~n-1中缺失的数字


来源:LeetCode——《剑指-Offer》专项



2. 题目说明

在这里插入图片描述

在这里插入图片描述



3. 题目解析 — I. 在排序数组中查找数字 I



方法一:遍历+常规解法

顺序遍历即可。时间复杂度



O

(

n

)

O(n)






O


(


n


)





,空间复杂度



O

(

1

)

O(1)






O


(


1


)





。没有用到

排序数组

的特性。

参见代码如下:

// 执行用时 :4 ms, 在所有 C++ 提交中击败了98.65%的用户
// 内存消耗 :15.8 MB,在所有 C++ 提交中击败了100.00%的用户

class Solution {
public:
    int search(vector<int>& nums, int target) {
        if (nums.size() == 0) return 0;
        int tmp = 0;
        for (int i = 0; i <nums.size(); ++i) {
            while (i < nums.size() and nums[i] == target) {
                ++tmp;
                ++i;
            }
        }
        return tmp;;
    }
};



方法二:二分法+递归+巧妙解法

二分法的巧妙应用,现以找连续出现数字的第一个位置为例,主要思路如下:

  • 每次拿中间数字

    nums[mid]



    target

    做比较



    • nums[mid] > target



      target

      只能出现在前半段,即

      right = mid - 1


    • nums[mid] < target



      target

      只能出现在前半段,即

      left = mid + 1


    • nums[mid] == target

      ,首先需要判断中间这个数字是不是第一个

      target

      ,如果中间数字的前一个数字不等于

      target

      那么中间数字就是第一个

      target

      ,如果前一个数字也为

      target

      那么第一个数字出现的位置就在前半段,所以

      right = mid - 1

至此,即可采用二分+递归的思想解决这个问题了,关于最后一个

target

的位置查找与上面的思想基本一致,在此不列出,可自行思考。

时间复杂度



O

(

l

o

g

n

)

O(logn)






O


(


l


o


g


n


)





,空间复杂度



O

(

1

)

O(1)






O


(


1


)





所以,遇到排序数组或者能转化成排序数组的形式,二分法是降低时间复杂度的利器!

参见代码如下:

// 执行用时 :16 ms, 在所有 C++ 提交中击败了22.43%的用户
// 内存消耗 :23.7 MB, 在所有 C++ 提交中击败了100.00%的用户

class Solution {
public:
    int search(vector<int>& nums, int target) {
        int left = getLeft(nums, target, 0, nums.size() - 1);
        int right = getRight(nums, target, 0, nums.size() - 1);
        if (left > -1 and right > -1) return right - left + 1;
        return 0; 
    }

    int getLeft(vector<int> nums, int target, int left, int right) {
        if (left > right) return -1;
        int mid = (left + right) >> 1;
        if (nums[mid] == target) {
            if ((mid > 0 and nums[mid - 1] != target) or mid == 0) return mid;
            else right = mid - 1;
        }
        else if (nums[mid] > target) right = mid - 1;
        else left = mid + 1;

        return getLeft(nums, target, left, right);
    }

    int getRight(vector<int> nums, int target, int left, int right) {
        if (left > right) return -1;
        int mid = (left + right) >> 1;
        if (nums[mid] == target) {
            if ((mid < nums.size() - 1 and nums[mid + 1] != target) or mid == nums.size() - 1) return mid;
            else left = mid + 1;
        }
        else if (nums[mid] < target) left = mid + 1;
        else right = mid - 1;

        return getRight(nums, target, left, right);
    }
};



4. 题目解析 — II. 0~n-1中缺失的数字



4.1 方法一:遍历+常规解法

暴力法,遍历数组,数字在数组中,其下标与当前数组所存放的值相同,若不相同,则返回数组下标即可。若遍历完数组仍为返回,说明数组有序,最后一个数字是缺失数字,则需要返回数组末尾存放的数字再加一即可。时间复杂度



O

(

n

)

O(n)






O


(


n


)





,空间复杂度



O

(

1

)

O(1)






O


(


1


)





// 执行用时 :24 ms, 在所有 C++ 提交中击败了58.30%的用户
// 内存消耗 :19.5 MB, 在所有 C++ 提交中击败了100.00%的用户
class Solution {
public:
    int missingNumber(vector<int>& nums) {
        for (int i = 0; i < nums.size(); ++i) {
            if (i != nums[i]) 
                return i;
        }
        return nums.back() + 1;
    }

};



方法二:二分法+巧妙解法

类比在有序数组查找某数是否存在一个性质。

参见代码如下:

// 执行用时 :20 ms, 在所有 C++ 提交中击败了82.48%的用户
// 内存消耗 :19.5 MB, 在所有 C++ 提交中击败了100.00%的用户

class Solution {
public:
    int missingNumber(vector<int>& nums) {
        int left = 0, right = nums.size();
        while (left < right) {
            int mid = (left + right) >> 1;
            if (mid == nums[mid]) left = mid + 1; 
            else right = mid;
        }
        return left;
    }
};



版权声明:本文为yl_puyu原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。