Pixel2Pixel:卡通照片真人化

  • Post author:
  • Post category:其他




Pixel2Pixel:卡通照片真人化


项目链接:


Pixel2Pixel:卡通照片真人化


前言:


之前PaddleGAN的趣味应用如雨后春笋般地出现,非常多的项目都是xxx动漫化。当时就有一个很普通的想法为什么大家都会去搞动漫化,这很可能是因为二次元文化的原因,又或者是动漫化的应用、商业价值。就突然蹦出一个想法,为什么没人弄动漫真人化呢,然后我就去项目搜了,结果确实貌似没有人做这个项目。刚开始我以为我这个想法实现起来很难,到后面和大神们讨论后,其实觉得实现原理也很简单,就是把人像动漫化的数据集里面的标签互换。比如人像卡通化,就是A to B(A是真人,B是动漫,B是标签)。那么此次这个项目卡通人像化就是B to A(A是真人,B是动漫,A是标签).




先来看看实现效果


实现效果:


真人原图:


实现效果:


真人原图:

可以看到效果已经很逼真了!




1.下载安装包

import paddle
import paddle.nn as nn
from paddle.io import Dataset, DataLoader

import os
import cv2
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt

%matplotlib inline




2.解压数据



数据准备:

# 解压数据
!unzip -q data/data79149/cartoon_A2B.zip -d data/




3.数据可视化(已划分好数据集)

# 训练数据统计
train_names = os.listdir('data/cartoon_A2B/train')
print(f'训练集数据量: {len(train_names)}')

# 测试数据统计
test_names = os.listdir('data/cartoon_A2B/test')
print(f'测试集数据量: {len(test_names)}')

# 训练数据可视化
imgs = []
for img_name in np.random.choice(train_names, 3, replace=False):
    imgs.append(cv2.imread('data/cartoon_A2B/train/'+img_name))

img_show = np.vstack(imgs)[:,:,::-1]
plt.figure(figsize=(10, 10))
plt.imshow(img_show)
plt.show()




注意:

A代表真人,B代表卡通。源参考代码 是A to B。本次实验项目是用 B to A

又因为数据集是把 真人照片和卡通图片拼接在一起,利用划分宽度来区别原图与标签。例如源程序 是用 宽度[ : 256]分成真人(即原图),[256 : ]分成卡通(即标签)

要实现这个项目因此要把他们调换过来。

class PairedData(Dataset):
    def __init__(self, phase):
        super(PairedData, self).__init__() 
        self.img_path_list = self.load_A2B_data(phase)    # 获取数据列表
        self.num_samples = len(self.img_path_list)        # 数据量

    def __getitem__(self, idx):
        img_A2B = cv2.imread(self.img_path_list[idx])     # 读取数据
        img_A2B = img_A2B.astype('float32') / 127.5 - 1.  # 归一化
        img_A2B = img_A2B.transpose(2, 0, 1)              # HWC -> CHW
        img_A = img_A2B[..., 256:]                        # 卡通图(原图)   
        img_B = img_A2B[..., :256]                        # 真人图(标签)
        return img_A, img_B

    def __len__(self):
        return self.num_samples

    @staticmethod
    def load_A2B_data(phase):
        assert phase in ['train', 'test'], "phase should be set within ['train', 'test']"
        # 读取数据集,数据中每张图像包含照片和对应的卡通画。
        data_path = 'data/cartoon_A2B/'+phase
        return [os.path.join(data_path, x) for x in os.listdir(data_path)]
paired_dataset_train = PairedData('train')
paired_dataset_test = PairedData('test')




4.定义生成器

class UnetGenerator(nn.Layer):
    def __init__(self, input_nc=3, output_nc=3, ngf=64):
        super(UnetGenerator, self).__init__()

        self.down1 = nn.Conv2D(input_nc, ngf, kernel_size=4, stride=2, padding=1)
        self.down2 = Downsample(ngf, ngf*2)
        self.down3 = Downsample(ngf*2, ngf*4)
        self.down4 = Downsample(ngf*4, ngf*8)
        self.down5 = Downsample(ngf*8, ngf*8)
        self.down6 = Downsample(ngf*8, ngf*8)
        self.down7 = Downsample(ngf*8, ngf*8)

        self.center = Downsample(ngf*8, ngf*8)

        self.up7 = Upsample(ngf*8, ngf*8, use_dropout=True)
        self.up6 = Upsample(ngf*8*2, ngf*8, use_dropout=True)
        self.up5 = Upsample(ngf*8*2, ngf*8, use_dropout=True)
        self.up4 = Upsample(ngf*8*2, ngf*8)
        self.up3 = Upsample(ngf*8*2, ngf*4)
        self.up2 = Upsample(ngf*4*2, ngf*2)
        self.up1 = Upsample(ngf*2*2, ngf)

        self.output_block = nn.Sequential(
            nn.ReLU(),
            nn.Conv2DTranspose(ngf*2, output_nc, kernel_size=4, stride=2, padding=1),
            nn.Tanh()
        )

    def forward(self, x):
        d1 = self.down1(x)
        d2 = self.down2(d1)
        d3 = self.down3(d2)
        d4 = self.down4(d3)
        d5 = self.down5(d4)
        d6 = self.down6(d5)
        d7 = self.down7(d6)
        
        c = self.center(d7)
        
        x = self.up7(c, d7)
        x = self.up6(x, d6)
        x = self.up5(x, d5)
        x = self.up4(x, d4)
        x = self.up3(x, d3)
        x = self.up2(x, d2)
        x = self.up1(x, d1)

        x = self.output_block(x)
        return x


class Downsample(nn.Layer):
    # LeakyReLU => conv => batch norm
    def __init__(self, in_dim, out_dim, kernel_size=4, stride=2, padding=1):
        super(Downsample, self).__init__()

        self.layers = nn.Sequential(
            nn.LeakyReLU(0.2),
            nn.Conv2D(in_dim, out_dim, kernel_size, stride, padding, bias_attr=False),
            nn.BatchNorm2D(out_dim)
        )

    def forward(self, x):
        x = self.layers(x)
        return x


class Upsample(nn.Layer):
    # ReLU => deconv => batch norm => dropout
    def __init__(self, in_dim, out_dim, kernel_size=4, stride=2, padding=1, use_dropout=False):
        super(Upsample, self).__init__()

        sequence = [
            nn.ReLU(),
            nn.Conv2DTranspose(in_dim, out_dim, kernel_size, stride, padding, bias_attr=False),
            nn.BatchNorm2D(out_dim)
        ]

        if use_dropout:
            sequence.append(nn.Dropout(p=0.5))

        self.layers = nn.Sequential(*sequence)

    def forward(self, x, skip):
        x = self.layers(x)
        x = paddle.concat([x, skip], axis=1)
        return x




5.定义鉴别器

class NLayerDiscriminator(nn.Layer):
    def __init__(self, input_nc=6, ndf=64):
        super(NLayerDiscriminator, self).__init__()

        self.layers = nn.Sequential(
            nn.Conv2D(input_nc, ndf, kernel_size=4, stride=2, padding=1), 
            nn.LeakyReLU(0.2),
            
            ConvBlock(ndf, ndf*2),
            ConvBlock(ndf*2, ndf*4),
            ConvBlock(ndf*4, ndf*8, stride=1),

            nn.Conv2D(ndf*8, 1, kernel_size=4, stride=1, padding=1),
            nn.Sigmoid()
        )

    def forward(self, input):
        return self.layers(input)


class ConvBlock(nn.Layer):
    # conv => batch norm => LeakyReLU
    def __init__(self, in_dim, out_dim, kernel_size=4, stride=2, padding=1):
        super(ConvBlock, self).__init__()

        self.layers = nn.Sequential(
            nn.Conv2D(in_dim, out_dim, kernel_size, stride, padding, bias_attr=False),
            nn.BatchNorm2D(out_dim),
            nn.LeakyReLU(0.2)
        )

    def forward(self, x):
        x = self.layers(x)
        return x




实例化生成器,鉴别器

generator = UnetGenerator()
discriminator = NLayerDiscriminator()
out = generator(paddle.ones([1, 3, 256, 256]))
print('生成器输出尺寸:', out.shape)

out = discriminator(paddle.ones([1, 6, 256, 256]))
print('鉴别器输出尺寸:', out.shape)




6.定义训练各项超参数

# 超参数
LR = 1e-4
BATCH_SIZE = 8
EPOCHS = 100

# 优化器
optimizerG = paddle.optimizer.Adam(
    learning_rate=LR,
    parameters=generator.parameters(),
    beta1=0.5,
    beta2=0.999)

optimizerD = paddle.optimizer.Adam(
    learning_rate=LR,
    parameters=discriminator.parameters(), 
    beta1=0.5,
    beta2=0.999)
    
# 损失函数
bce_loss = nn.BCELoss()
l1_loss = nn.L1Loss()

# dataloader
data_loader_train = DataLoader(
    paired_dataset_train,
    batch_size=BATCH_SIZE,
    shuffle=True,
    drop_last=True
    )

data_loader_test = DataLoader(
    paired_dataset_test,
    batch_size=BATCH_SIZE
    )




训练效果


第一列是卡通(原图),第二列是真人图片(标签),第三列是学习出来的结果

刚开始学到的效果:

100epochs的效果:

我们可以看出已经有很好的效果

results_save_path = 'work/results'
os.makedirs(results_save_path, exist_ok=True)  # 保存每个epoch的测试结果

weights_save_path = 'work/weights'
os.makedirs(weights_save_path, exist_ok=True)  # 保存模型

for epoch in range(EPOCHS):
    for data in tqdm(data_loader_train):
        real_A, real_B = data
        
        optimizerD.clear_grad()
        # D(real)
        real_AB = paddle.concat((real_A, real_B), 1)
        d_real_predict = discriminator(real_AB)
        d_real_loss = bce_loss(d_real_predict, paddle.ones_like(d_real_predict))

        # D(fake)
        fake_B = generator(real_A).detach()
        fake_AB = paddle.concat((real_A, fake_B), 1)
        d_fake_predict = discriminator(fake_AB)
        d_fake_loss = bce_loss(d_fake_predict, paddle.zeros_like(d_fake_predict))
        
        # train D
        d_loss = (d_real_loss + d_fake_loss) / 2.
        d_loss.backward()
        optimizerD.step()

        optimizerG.clear_grad()
        # D(fake)
        fake_B = generator(real_A)
        fake_AB = paddle.concat((real_A, fake_B), 1)
        g_fake_predict = discriminator(fake_AB)
        g_bce_loss = bce_loss(g_fake_predict, paddle.ones_like(g_fake_predict))
        g_l1_loss = l1_loss(fake_B, real_B) * 100.
        g_loss = g_bce_loss + g_l1_loss
        
        # train G
        g_loss.backward()
        optimizerG.step()

    print(f'Epoch [{epoch+1}/{EPOCHS}] Loss D: {d_loss.numpy()}, Loss G: {g_loss.numpy()}')

    if (epoch+1) % 10 == 0:
        paddle.save(generator.state_dict(), os.path.join(weights_save_path, 'epoch'+str(epoch+1).zfill(3)+'.pdparams'))

        # test
        generator.eval()
        with paddle.no_grad():
            for data in data_loader_test:
                real_A, real_B = data
                break

            fake_B = generator(real_A)
            result = paddle.concat([real_A[:3], real_B[:3], fake_B[:3]], 3)

            result = result.detach().numpy().transpose(0, 2, 3, 1)
            result = np.vstack(result)
            result = (result * 127.5 + 127.5).astype(np.uint8)
    
        cv2.imwrite(os.path.join(results_save_path, 'epoch'+str(epoch+1).zfill(3)+'.png'), result)

        generator.train()




7.测试

# 为生成器加载权重
last_weights_path = os.path.join(weights_save_path, sorted(os.listdir(weights_save_path))[-1])
print('加载权重:', last_weights_path)

model_state_dict = paddle.load(last_weights_path)
generator.load_dict(model_state_dict)
generator.eval()
读取数据
test_names = os.listdir('data/cartoon_A2B/test')
# img_name = np.random.choice(test_names)
img_name = '01481.png'
img_A2B = cv2.imread('data/cartoon_A2B/test/'+img_name)
img_A = img_A2B[:, 256:]                                  # 卡通图(即输入)
img_B = img_A2B[:, :256]                                  # 真人图(即预测结果)

# img_A= cv2.imread('data/test4.png')
# img_A = img_A[:, 256:]

g_input = img_A.astype('float32') / 127.5 - 1             # 归一化
g_input = g_input[np.newaxis, ...].transpose(0, 3, 1, 2)  # NHWC -> NCHW
g_input = paddle.to_tensor(g_input)                       # numpy -> tensor

g_output = generator(g_input)
g_output = g_output.detach().numpy()                      # tensor -> numpy
g_output = g_output.transpose(0, 2, 3, 1)[0]              # NCHW -> NHWC
g_output = g_output * 127.5 + 127.5                       # 反归一化
g_output = g_output.astype(np.uint8)

img_show = np.hstack([img_A, g_output])[:,:,::-1]
plt.figure(figsize=(8, 8))
plt.imshow(img_show)
 numpy
g_output = g_output.transpose(0, 2, 3, 1)[0]              # NCHW -> NHWC
g_output = g_output * 127.5 + 127.5                       # 反归一化
g_output = g_output.astype(np.uint8)

img_show = np.hstack([img_A, g_output])[:,:,::-1]
plt.figure(figsize=(8, 8))
plt.imshow(img_show)
plt.show()




总结:

至此,动漫照片真人化项目就完成了,本次项目大部分基于参考项目,只是做了些许改动。




参考项目:


Pixel2Pixel:人像卡通化




关于作者

  • 感兴趣的方向为:目标检测,图像分类,图像分割等。
  • 不定期更新感兴趣的CV比赛baseline等
  • 个人荣誉:飞桨开发者技术专家(PPDE)
  • 欢迎大家有问题留言交流学习,共同进步成长。



版权声明:本文为weixin_47349091原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。