没有做训练测试集划分,直接全量训练,全量测试
   
    
    
    一、引入 Spark 环境
   
from pyspark.sql import SparkSession
spark = SparkSession.builder.master("local[*]").getOrCreate()
    
    
    二、设置模型评估方法
   
# 评估
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
def check(train_eval):
    f1_score = MulticlassClassificationEvaluator(predictionCol='prediction', labelCol='Type_idx', metricName='f1').evaluate(train_eval)
    acc_score = MulticlassClassificationEvaluator(predictionCol='prediction', labelCol='Type_idx', metricName='accuracy').evaluate(train_eval)
    loss = MulticlassClassificationEvaluator(predictionCol='prediction', labelCol='Type_idx', metricName='logLoss').evaluate(train_eval)
    precision = MulticlassClassificationEvaluator(predictionCol='prediction', labelCol='Type_idx', metricName='weightedPrecision').evaluate(train_eval)
    recall = MulticlassClassificationEvaluator(predictionCol='prediction', labelCol='Type_idx', metricName='weightedRecall').evaluate(train_eval)
    return pd.DataFrame({
        'F1': [f1_score],
        'Recall': [recall],
        'Precision': [precision],
        'Accuracy': [acc_score],
        'Loss': [loss],
    })
    
    
    三、读取/修改 数据
   
- 这里用的是 Pandas 来读数据,然后转成 Spark 的 DataFrame
- 
     数据格式同
 
 Python 模型训练:逻辑回归、KNN、朴素贝叶斯、LDA、支持向量机、GBDT、决策树
 
# 用 pandas 读取数据并修改异常列名,挑选训练列
import pandas as pd
df = spark.createDataFrame(pd.read_excel('data.xlsx', sheet_name='training dataset'))
# '.' 在后面会报错,这里直接换掉
df = df.withColumnRenamed('DBE.C', 'DBEC').withColumnRenamed('DBE.O', 'DBEO')
# 选择使用到的列
train_df = df.select(['C', 'H', 'O', 'N', 'S', 'group', 'AImod', 'DBE', 'MZ', 'OC', 'HC', 'SC', 'NC', 'NOSC', 'DBEC', 'DBEO', 'location', 'sample', 'Type'])
train_df
     
   
    
    
    四、编码、合并列
   
# 编码、合并列
from pyspark.ml.feature import StringIndexer
from pyspark.ml.feature import IndexToString
from pyspark.ml import PipelineModel
from pyspark.ml.feature import VectorAssembler
# 将 string、负数 列换成数字
indexer = StringIndexer(inputCols = ['group', 'NOSC', 'location', 'sample', 'Type'], outputCols = ['group_idx', 'NOSC_idx', 'location_idx', 'sample_idx', 'Type_idx'])
encoder = indexer.fit(train_df)
decoder = IndexToString(inputCol = 'prediction', outputCol = 'result', labels = encoder.labelsArray[4])
# 将这些列合并成一列
assembler = VectorAssembler(inputCols = ['C', 'H', 'O', 'N', 'S', 'group_idx', 'AImod', 'DBE', 'MZ',
                                         'OC', 'HC', 'SC', 'NC', 'NOSC_idx', 'DBEC', 'DBEO', 'location_idx', 'sample_idx']
                            , outputCol = 'features')
train_data = assembler.transform(encoder.transform(train_df)).select('features', 'Type_idx')
    
    
    五、模型训练
   
    
    
    逻辑回归
   
- 啥也没调,指标难看
from pyspark.ml.classification import LogisticRegression
lr = LogisticRegression(featuresCol = 'features', labelCol = 'Type_idx')
model = lr.fit(train_data)
# 指标检测
check(model.transform(assembler.transform(encoder.transform(train_df))))
     
   
    
    
    朴素贝叶斯
   
- 这个指标更看不了,懒得调了
from pyspark.ml.classification import NaiveBayes
nb = NaiveBayes(featuresCol = 'features', labelCol = 'Type_idx')
model = nb.fit(train_data)
# 指标检测
check(model.transform(assembler.transform(encoder.transform(train_df))))
     
   
    
    
    六、模型保存
   
- Pipeline 会按照列表的顺序一个一个执行 transform,上一个结果传给下一个
# 流水线保存
pipeline = PipelineModel(stages = [encoder, assembler, model, decoder])
pipeline.write().overwrite().save('./output/model')
    
    
    七、读取模型测试数据
   
# 读取模型测试数据
import pandas as pd
df = spark.createDataFrame(pd.read_excel('data.xlsx', sheet_name='validation dataset'))
df = df.withColumnRenamed('DBE.C', 'DBEC').withColumnRenamed('DBE.O', 'DBEO')
test_df = df.select(['C', 'H', 'O', 'N', 'S', 'group', 'AImod', 'DBE', 'MZ', 'OC', 'HC', 'SC', 'NC', 'NOSC', 'DBEC', 'DBEO', 'location', 'sample'])
from pyspark.ml import PipelineModel
model = PipelineModel.load('./output/model')
test_res = model.transform(test_df)
test_res
     
   
 
版权声明:本文为baidu_40468340原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
