自用的变分法与最优控制推导

  • Post author:
  • Post category:其他




经典变分法



推导1

推导步骤来自

理论力学3—变分法的核心,欧拉-拉格朗日方程






δ

J

=

δ

a

b

f

(

y

,

y

)

d

x

=

a

b

δ

f

(

y

,

y

)

d

x

=

a

b

(

f

y

δ

y

+

f

y

δ

y

)

d

x

=

a

b

f

y

δ

y

d

x

+

a

b

f

y

d

d

x

δ

y

d

x

a

b

f

y

d

d

x

δ

y

d

x

=

a

b

f

y

d

δ

y

=

[

f

y

δ

y

]

a

b

a

b

δ

y

d

d

x

f

y

d

x

δ

J

=

[

f

y

δ

y

]

a

b

+

a

b

f

y

δ

y

d

x

a

b

δ

y

d

d

x

f

y

d

x

=

a

b

(

f

y

d

d

x

f

y

)

δ

y

d

x

\begin{aligned} \delta J&=\delta\int_a^bf(y,y’)\text{d}x \\ &=\int_a^b\delta f(y,y’)\text{d}x \\ &=\int_a^b\left(\frac{\partial f}{\partial y}\delta y +\frac{\partial f}{\partial y’}\delta y’\right)\text{d}x \\ &=\int_a^b\frac{\partial f}{\partial y}\delta y\text{d}x+\int_a^b\frac{\partial f}{\partial y’}\frac{\text{d}}{\text{d}x}\delta y\text{d}x \\ \int_a^b\frac{\partial f}{\partial y’}\frac{\text{d}}{\text{d}x}\delta y\text{d}x &=\int_a^b\frac{\partial f}{\partial y’}\text{d}\delta y =\left[\frac{\partial f}{\partial y’}\delta y\right]_a^b -\int_a^b\delta y\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y’}\text{d}x \\ \delta J&=\left[\frac{\partial f}{\partial y’}\delta y\right]_a^b +\int_a^b\frac{\partial f}{\partial y}\delta y\text{d}x -\int_a^b\delta y\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y’}\text{d}x \\ &=\int_a^b\left(\frac{\partial f}{\partial y} -\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y’}\right)\delta y\text{d}x \end{aligned}
















δ


J






































a








b



































y





































f
































d



x















d





















δy



d



x








δ


J



































=




δ
















a








b




















f


(


y


,





y






















)



d



x












=
















a








b




















δ


f


(


y


,





y






















)



d



x












=
















a








b






















(

















y

















f




















δy




+



















y





































f




















δ



y























)







d



x












=
















a








b


































y

















f




















δy



d



x




+
















a








b



































y





































f
































d



x















d





















δy



d



x












=
















a








b



































y





































f





















d



δy




=







[


















y





































f




















δy



]












a








b





































a








b




















δy














d



x















d




































y





































f





















d



x












=







[


















y





































f




















δy



]












a








b




















+
















a








b


































y

















f




















δy



d



x





















a








b




















δy














d



x















d




































y





































f





















d



x












=
















a








b






















(

















y

















f







































d



x















d




































y





































f





















)






δy



d



x






























f

y

d

d

x

f

y

=

0

\frac{\partial f}{\partial y} -\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y’}=0




















y

















f











































d



x















d




































y





































f






















=








0













d

f

d

x

=

f

y

d

y

d

x

+

f

y

d

y

d

x

=

d

d

x

f

y

d

y

d

x

+

f

y

d

y

d

x

\begin{aligned} \frac{\text{d}f}{\text{d}x}&=\frac{\partial f}{\partial y}\frac{\text{d}y}{\text{d}x} +\frac{\partial f}{\partial y’}\frac{\text{d}y’}{\text{d}x} \\ &=\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y’}\frac{\text{d}y}{\text{d}x} +\frac{\partial f}{\partial y’}\frac{\text{d}y’}{\text{d}x} \\ \end{aligned}




























d



x















d



f





















































=


















y

















f
































d



x















d



y






















+



















y





































f
































d



x















d




y


















































=
















d



x















d




































y





































f
































d



x















d



y






















+



















y





































f
































d



x















d




y




































































d

d

x

(

y

f

y

f

)

=

0

y

f

y

f

=

C

\frac{\text{d}}{\text{d}x}\left(y’\frac{\partial f}{\partial y’}-f\right)=0 \\ y’\frac{\partial f}{\partial y’}-f=C


















d



x















d

























(




y





































y





































f



























f



)






=








0









y





































y





































f































f




=








C







推导2

推导步骤来自

两小时搞定变分法






y

0

(

x

)

y_0(x)







y










0


















(


x


)





为最优函数,



y

(

x

)

y(x)






y


(


x


)





为其它的函数,令



y

(

x

)

y

0

(

x

)

=

ϵ

η

(

x

)

=

δ

y

(

x

)

y(x)-y_0(x)=\epsilon\eta(x)=\delta y(x)






y


(


x


)














y










0


















(


x


)




=








ϵη


(


x


)




=








δy


(


x


)





,则





J

(

ϵ

)

=

a

b

f

(

y

(

ϵ

)

,

y

(

ϵ

)

,

x

)

d

x

=

a

b

f

(

y

0

+

ϵ

η

(

x

)

,

y

0

+

ϵ

η

(

x

)

,

x

)

d

x

d

J

d

ϵ

=

a

b

(

f

y

d

y

d

ϵ

+

f

y

d

y

d

ϵ

+

f

x

d

x

d

ϵ

)

d

x

=

a

b

(

f

y

η

+

f

y

η

)

d

x

=

a

b

f

y

η

d

x

+

a

b

f

y

d

η

=

a

b

f

y

η

d

x

+

[

f

y

(

x

)

η

(

x

)

]

a

b

+

a

b

η

(

x

)

d

d

x

f

y

d

x

=

a

b

(

f

y

d

d

x

f

y

)

η

(

x

)

d

x

+

[

f

y

(

x

)

η

(

x

)

]

a

b

\begin{aligned} J(\epsilon)&=\int_a^bf(y(\epsilon),y'(\epsilon),x)\text{d}x \\ &=\int_a^bf(y_0+\epsilon\eta(x),y_0’+\epsilon\eta'(x),x)\text{d}x \\ \frac{\text{d}J}{\text{d}\epsilon} &=\int_a^b\left(\frac{\partial f}{\partial y}\frac{\text{d}y}{\text{d}\epsilon} +\frac{\partial f}{\partial y’}\frac{\text{d}y’}{\text{d}\epsilon} +\frac{\partial f}{\partial x}\frac{\text{d}x}{\text{d}\epsilon}\right)\text{d}x \\ &=\int_a^b\left(\frac{\partial f}{\partial y}\eta +\frac{\partial f}{\partial y’}\eta’\right)\text{d}x \\ &=\int_a^b\frac{\partial f}{\partial y}\eta\text{d}x+\int_a^b\frac{\partial f}{\partial y’}\text{d}\eta \\ &=\int_a^b\frac{\partial f}{\partial y}\eta\text{d}x +\left[\frac{\partial f}{\partial y'(x)}\eta(x)\right]_a^b +\int_a^b\eta(x)\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y’}\text{d}x \\ &=\int_a^b\left(\frac{\partial f}{\partial y} -\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y’}\right)\eta(x)\text{d}x +\left[\frac{\partial f}{\partial y'(x)}\eta(x)\right]_a^b \end{aligned}
















J


(


ϵ


)


























d



ϵ















d



J







































































=
















a








b




















f


(


y


(


ϵ


)


,





y






















(


ϵ


)


,




x


)



d



x












=
















a








b




















f


(



y










0




















+




ϵη


(


x


)


,





y










0































+




ϵ



η






















(


x


)


,




x


)



d



x












=
















a








b






















(

















y

















f
































d



ϵ















d



y






















+



















y





































f
































d



ϵ















d




y










































+


















x

















f
































d



ϵ















d



x





















)







d



x












=
















a








b






















(

















y

















f




















η




+



















y





































f





















η























)







d



x












=
















a








b


































y

















f




















η



d



x




+
















a








b



































y





































f





















d



η












=
















a








b


































y

















f




















η



d



x




+







[


















y






















(


x


)

















f




















η


(


x


)



]












a








b




















+
















a








b




















η


(


x


)














d



x















d




































y





































f





















d



x












=
















a








b






















(

















y

















f







































d



x















d




































y





































f





















)






η


(


x


)



d



x




+







[


















y






















(


x


)

















f




















η


(


x


)



]












a








b








































终端时刻固定、终端状态自由





δ

J

=

a

b

(

f

y

d

d

x

f

y

)

δ

y

d

x

+

f

y

(

b

)

δ

y

(

b

)

=

0

\begin{aligned} \delta J&=\int_a^b\left(\frac{\partial f}{\partial y} -\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y’}\right)\delta y\text{d}x +\frac{\partial f}{\partial y'(b)}\delta y(b)=0 \end{aligned}
















δ


J





























=
















a








b






















(

















y

















f







































d



x















d




































y





































f





















)






δy



d



x




+



















y






















(


b


)

















f




















δy


(


b


)




=




0
























所以(等号两边都必须等于0的证明见下面的变分预备定理)





a

b

(

f

y

d

d

x

f

y

)

δ

y

d

x

=

f

y

(

b

)

δ

y

(

b

)

=

0

\begin{aligned} \int_a^b\left(\frac{\partial f}{\partial y} -\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y’}\right)\delta y\text{d}x =\frac{\partial f}{\partial y'(b)}\delta y(b)=0 \end{aligned}




























a








b






















(

















y

















f







































d



x















d




































y





































f





















)






δy



d



x




=



















y






















(


b


)

















f




















δy


(


b


)




=




0
























因为



δ

y

(

b

)

\delta y(b)






δy


(


b


)





不受限,所以





f

y

(

b

)

=

0

\frac{\partial f}{\partial y'(b)}=0





















y






















(


b


)

















f






















=








0







终端时刻自由、终端状态固定

终端时刻自由的一个公式





δ

y

(

b

+

d

b

)

=

δ

y

(

b

)

+

y

(

b

)

d

b

(

1

1

)

\delta y(b+\text{d}b)=\delta y(b)+y'(b)\text{d}b\quad(1-1)






δy


(


b




+









d



b


)




=








δy


(


b


)




+









y






















(


b


)



d



b




(


1













1


)











δ

J

=

a

b

+

d

b

f

(

y

+

δ

y

,

y

+

δ

y

)

d

x

a

b

f

(

y

,

y

)

d

x

=

a

b

δ

f

(

y

,

y

)

d

x

+

b

d

b

f

(

y

+

δ

y

,

y

+

δ

y

)

d

x

=

a

b

(

f

y

d

d

x

f

y

)

δ

y

d

x

+

f

y

(

b

)

δ

y

(

b

)

+

f

(

y

(

b

)

,

y

(

b

)

)

d

b

\begin{aligned} \delta J&=\int_a^{b+\text{d}b}f(y+\delta y,y’+\delta y’)\text{d}x -\int_a^{b}f(y,y’)\text{d}x \\ &=\int_a^b\delta f(y,y’)\text{d}x+\int_b^{\text{d}b}f(y+\delta y,y’+\delta y’)\text{d}x \\ &=\int_a^b\left(\frac{\partial f}{\partial y} -\frac{\text{d}}{\text{d}x}\frac{\partial f}{\partial y’}\right)\delta y\text{d}x +\frac{\partial f}{\partial y'(b)}\delta y(b)+f(y(b),y'(b))\text{d}b \\ \end{aligned}
















δ


J









































=
















a









b


+



d



b





















f


(


y




+




δy


,





y
























+




δ



y






















)



d



x





















a









b





















f


(


y


,





y






















)



d



x












=
















a








b




















δ


f


(


y


,





y






















)



d



x




+
















b










d



b





















f


(


y




+




δy


,





y
























+




δ



y






















)



d



x












=
















a








b






















(

















y

















f







































d



x















d




































y





































f





















)






δy



d



x




+



















y






















(


b


)

















f




















δy


(


b


)




+




f


(


y


(


b


)


,





y






















(


b


))



d



b
























(补充说明:



x

x

+

d

x

f

(

t

)

d

t

=

f

(

x

)

d

x

\int_x^{x+\text{d}x}f(t)\text{d}t=f(x)\text{d}x


















x









x


+



d



x





















f


(


t


)



d



t




=








f


(


x


)



d



x





)







f

y

(

b

)

δ

y

(

b

)

+

f

(

y

(

b

)

,

y

(

b

)

)

d

b

=

0

(

1

2

)

\frac{\partial f}{\partial y'(b)}\delta y(b)+f(y(b),y'(b))\text{d}b=0\quad(1-2)





















y






















(


b


)

















f




















δy


(


b


)




+








f


(


y


(


b


)


,





y






















(


b


))



d



b




=








0




(


1













2


)







又因为



δ

y

(

b

+

d

b

)

=

δ

y

(

b

)

+

y

(

b

)

d

b

=

0

\delta y(b+\text{d}b)=\delta y(b)+y'(b)\text{d}b=0






δy


(


b




+









d



b


)




=








δy


(


b


)




+









y






















(


b


)



d



b




=








0





,所以





f

y

(

b

)

y

(

b

)

=

f

(

y

(

b

)

,

y

(

b

)

)

\frac{\partial f}{\partial y'(b)}y'(b)=f(y(b),y'(b))





















y






















(


b


)

















f





















y






















(


b


)




=








f


(


y


(


b


)


,





y






















(


b


))







终端时刻自由、终端状态自由

将式(1-1)代入(1-2)





f

y

(

b

)

(

δ

y

(

b

+

d

b

)

y

(

b

)

d

b

)

+

f

(

y

(

b

)

,

y

(

b

)

)

d

b

=

0

f

y

(

b

)

δ

y

(

b

+

d

b

)

+

(

f

(

y

(

b

)

,

y

(

b

)

)

f

y

(

b

)

)

d

b

=

0

\begin{aligned} & \frac{\partial f}{\partial y'(b)}(\delta y(b+\text{d}b)-y'(b)\text{d}b)+f(y(b),y'(b))\text{d}b=0 \\ & \frac{\partial f}{\partial y'(b)}\delta y(b+\text{d}b)+\left(f(y(b),y'(b)) -\frac{\partial f}{\partial y'(b)}\right)\text{d}b=0 \\ \end{aligned}






























































y






















(


b


)

















f




















(


δy


(


b




+





d



b


)










y






















(


b


)



d



b


)




+




f


(


y


(


b


)


,





y






















(


b


))



d



b




=




0

























y






















(


b


)

















f




















δy


(


b




+





d



b


)




+






(



f


(


y


(


b


)


,





y






















(


b


))
























y






















(


b


)

















f





















)







d



b




=




0
























得到





f

y

(

b

)

=

f

(

y

(

b

)

,

y

(

b

)

)

=

0

\begin{aligned} & \frac{\partial f}{\partial y'(b)}=f(y(b),y'(b))=0 \\ \end{aligned}
























































y






















(


b


)

















f






















=




f


(


y


(


b


)


,





y






















(


b


))




=




0
























终端时刻自由、终端状态约束

设约束方程



c

(

x

)

=

0

c(x)=0






c


(


x


)




=








0





,则约束时满足



δ

y

(

b

+

d

b

)

=

δ

y

(

b

)

+

y

(

b

)

d

b

=

c

(

b

)

d

b

\delta y(b+\text{d}b) =\delta y(b)+y'(b)\text{d}b=c'(b)\text{d}b






δy


(


b




+









d



b


)




=








δy


(


b


)




+









y






















(


b


)



d



b




=









c






















(


b


)



d



b





,代入式(1-2)得





f

y

(

b

)

(

c

(

b

)

y

(

b

)

)

d

b

+

f

(

y

(

b

)

,

y

(

b

)

)

d

b

=

0

[

f

y

(

c

y

)

+

f

(

y

,

y

)

]

x

=

b

=

0

\begin{aligned} & \frac{\partial f}{\partial y'(b)}(c'(b)-y'(b))\text{d}b+f(y(b),y'(b))\text{d}b=0 \\ & \left[\frac{\partial f}{\partial y’}(c’-y’)+f(y,y’)\right]_{x=b}=0 \\ \end{aligned}






























































y






















(


b


)

















f




















(



c






















(


b


)










y






















(


b


))



d



b




+




f


(


y


(


b


)


,





y






















(


b


))



d



b




=




0















[


















y





































f




















(



c






























y






















)




+




f


(


y


,





y






















)



]













x


=


b





















=




0
























极小值原理

下面的推导均可推广到



x

x






x









λ

\lambda






λ





等为向量形式。



哈密顿函数






H

(

x

,

u

,

λ

,

t

)

=

f

(

x

,

u

,

t

)

+

λ

(

t

)

g

(

x

,

u

,

t

)

H(x,u,\lambda,t)=f(x,u,t)+\lambda(t)g(x,u,t)






H


(


x


,




u


,




λ


,




t


)




=








f


(


x


,




u


,




t


)




+








λ


(


t


)


g


(


x


,




u


,




t


)







系统状态方程为



x

=

g

(

x

,

u

,

t

)

x’=g(x,u,t)







x
























=








g


(


x


,




u


,




t


)





。定义泛函





J

=

a

b

f

(

x

,

u

,

t

)

+

λ

(

t

)

(

g

(

x

,

u

,

t

)

x

(

t

)

)

d

t

=

a

b

H

(

x

,

u

,

λ

,

t

)

d

t

a

b

λ

(

t

)

d

x

(

t

)

=

a

b

H

(

x

,

u

,

λ

,

t

)

d

t

+

a

b

λ

(

t

)

x

(

t

)

d

t

[

λ

(

t

)

x

(

t

)

]

a

b

δ

J

=

a

b

δ

H

(

x

,

u

,

λ

,

t

)

d

t

+

a

b

λ

(

t

)

δ

x

(

t

)

d

t

λ

(

b

)

δ

x

(

b

)

=

a

b

(

H

x

+

λ

)

δ

x

+

H

u

δ

u

d

t

λ

(

b

)

δ

x

(

b

)

\begin{aligned} J&=\int_a^bf(x,u,t)+\lambda(t)(g(x,u,t)-x'(t))\text{d}t \\ &=\int_a^bH(x,u,\lambda,t)\text{d}t-\int_a^b\lambda(t)\text{d}x(t) \\ &=\int_a^bH(x,u,\lambda,t)\text{d}t+\int_a^b\lambda'(t)x(t)\text{d}t-[\lambda(t)x(t)]_a^b \\ \delta J&=\int_a^b\delta H(x,u,\lambda,t)\text{d}t +\int_a^b\lambda'(t)\delta x(t)\text{d}t-\lambda(b)\delta x(b) \\ &=\int_a^b\left(\frac{\partial H}{\partial x}+\lambda’\right)\delta x +\frac{\partial H}{\partial u}\delta u\text{d}t -\lambda(b)\delta x(b) \\ \end{aligned}
















J




















δ


J



































=
















a








b




















f


(


x


,




u


,




t


)




+




λ


(


t


)


(


g


(


x


,




u


,




t


)










x






















(


t


))



d



t












=
















a








b




















H


(


x


,




u


,




λ


,




t


)



d



t





















a








b




















λ


(


t


)



d



x


(


t


)












=
















a








b




















H


(


x


,




u


,




λ


,




t


)



d



t




+
















a








b





















λ






















(


t


)


x


(


t


)



d



t









[


λ


(


t


)


x


(


t


)



]










a








b




























=
















a








b




















δH


(


x


,




u


,




λ


,




t


)



d



t




+
















a








b





















λ






















(


t


)


δ


x


(


t


)



d



t









λ


(


b


)


δ


x


(


b


)












=
















a








b






















(

















x

















H






















+





λ























)






δ


x




+


















u

















H




















δ


u



d



t









λ


(


b


)


δ


x


(


b


)
























由变分预备定理得到





H

λ

=

x

H

x

=

λ

H

u

=

0

\begin{aligned} & \frac{\partial H}{\partial \lambda}=x’ \\ & \frac{\partial H}{\partial x}=-\lambda’ \\ & \frac{\partial H}{\partial u}=0 \\ \end{aligned}



































































λ

















H






















=





x












































x

















H






















=








λ












































u

















H






















=




0
























加入限制条件

下面开始最优控制,将积分上下限由



(

a

,

b

)

(a,b)






(


a


,




b


)





改为



(

t

0

,

t

f

)

(t_0,t_f)






(



t










0


















,





t










f


















)







末端时刻固定、末端状态约束时,加入末端性能指标



ϕ

(

x

f

)

\phi(x_f)






ϕ


(



x










f


















)





极小和末端状态约束条件



ψ

(

x

f

)

=

0

\psi(x_f)=0






ψ


(



x










f


















)




=








0











J

=

ϕ

(

x

)

+

γ

ψ

(

x

)

+

t

0

t

f

f

(

x

,

u

,

t

)

+

λ

(

t

)

(

g

(

x

,

u

,

t

)

x

(

t

)

)

d

t

δ

J

=

(

ϕ

x

+

γ

ψ

x

λ

(

t

f

)

)

δ

x

(

t

f

)

+

t

0

t

f

(

H

x

+

λ

)

δ

x

+

H

u

δ

u

d

t

\begin{aligned} J&=\phi(x)+\gamma\psi(x)+\int_{t_0}^{t_f}f(x,u,t)+\lambda(t)(g(x,u,t)-x'(t))\text{d}t \\ \delta J&=(\frac{\partial\phi}{\partial x} +\gamma\frac{\partial\psi}{\partial x}-\lambda(t_f))\delta x(t_f) +\int_{t_0}^{t_f}\left(\frac{\partial H}{\partial x}+\lambda’\right)\delta x +\frac{\partial H}{\partial u}\delta u\text{d}t \\ \end{aligned}
















J








δ


J





























=




ϕ


(


x


)




+




γ


ψ


(


x


)




+


















t










0



























t










f





































f


(


x


,




u


,




t


)




+




λ


(


t


)


(


g


(


x


,




u


,




t


)










x






















(


t


))



d



t












=




(
















x

















ϕ






















+




γ
















x

















ψ



























λ


(



t










f


















))


δ


x


(



t










f


















)




+


















t










0



























t










f







































(

















x

















H






















+





λ























)






δ


x




+


















u

















H




















δ


u



d



t
























横截条件





λ

(

t

f

)

=

ϕ

x

(

t

f

)

+

γ

ψ

x

(

t

f

)

\lambda(t_f)=\frac{\partial\phi}{\partial x(t_f)} +\gamma\frac{\partial\psi}{\partial x(t_f)}






λ


(



t










f


















)




=






















x


(



t










f


















)

















ϕ






















+








γ
















x


(



t










f


















)

















ψ

























的矢量形式为





[

λ

1

(

t

f

)

λ

2

(

t

f

)

]

=

[

ϕ

x

1

(

t

f

)

ϕ

x

2

(

t

f

)

]

+

[

ψ

1

x

1

(

t

f

)

ψ

2

x

1

(

t

f

)

ψ

1

x

2

(

t

f

)

ψ

2

x

2

(

t

f

)

]

[

γ

1

γ

2

]

\left[\begin{matrix} \lambda_1(t_f) \\ \lambda_2(t_f) \end{matrix}\right] =\left[\begin{matrix} \displaystyle\frac{\partial\phi}{\partial x_1(t_f)} \\ \displaystyle\frac{\partial\phi}{\partial x_2(t_f)} \end{matrix}\right] +\left[\begin{matrix} \displaystyle\frac{\partial\psi_1}{\partial x_1(t_f)} & \displaystyle\frac{\partial\psi_2}{\partial x_1(t_f)} \\ \displaystyle\frac{\partial\psi_1}{\partial x_2(t_f)} & \displaystyle\frac{\partial\psi_2}{\partial x_2(t_f)} \end{matrix}\right] \left[\begin{matrix} \gamma_1 \\ \gamma_2 \end{matrix}\right]








[














λ










1


















(



t










f


















)









λ










2


















(



t










f


















)




















]






=




























































x










1


















(



t










f


















)

















ϕ









































x










2


















(



t










f


















)

















ϕ


































































+




























































x










1


















(



t










f


















)


















ψ










1

























































x










2


















(



t










f


















)


















ψ










1














































































x










1


















(



t










f


















)


















ψ










2

























































x










2


















(



t










f


















)


















ψ










2




















































































[














γ










1

























γ










2




































]









如果末端状态自由则删除约束条件



ψ

(

x

f

)

=

0

\psi(x_f)=0






ψ


(



x










f


















)




=








0





。如果末端状态固定,则删除横截条件



λ

(

t

f

)

\lambda(t_f)






λ


(



t










f


















)







(因为末端状态固定时,



δ

x

(

t

f

)

\delta x(t_f)






δ


x


(



t










f


















)





任意导致横截条件



λ

(

t

f

)

\lambda(t_f)






λ


(



t










f


















)





不成立)

如果末端时刻自由,则增加哈密顿函数变化律公式





H

(

t

f

)

=

ϕ

t

f

γ

ψ

t

f

H(t_f)=-\frac{\partial\phi}{\partial t_f} -\gamma\frac{\partial\psi}{\partial t_f}






H


(



t










f


















)




=


























t










f

































ϕ































γ

















t










f

































ψ

























限制输入



几个前置证明



变分预备定理证明

  • 证明1:若



    h

    (

    x

    )

    h(x)






    h


    (


    x


    )





    为任意函数时均有



    a

    b

    M

    (

    x

    )

    h

    (

    x

    )

    d

    x

    =

    0

    \int_a^bM(x)h(x)\text{d}x=0


















    a








    b




















    M


    (


    x


    )


    h


    (


    x


    )



    d



    x




    =








    0









    M

    (

    x

    )

    0

    M(x)\equiv0






    M


    (


    x


    )













    0





反证法,若



M

(

x

)

≢

0

M(x)\not\equiv0






M


(


x


)




































0





,因为



h

(

x

)

h(x)






h


(


x


)





任意,令



h

(

x

)

=

M

(

x

)

(

x

a

)

(

x

b

)

h(x)=-M(x)(x-a)(x-b)






h


(


x


)




=











M


(


x


)


(


x













a


)


(


x













b


)





,则





M

(

x

)

h

(

x

)

=

M

2

(

x

)

(

x

a

)

(

x

b

)

M(x)h(x)=-M^2(x)(x-a)(x-b)






M


(


x


)


h


(


x


)




=












M










2









(


x


)


(


x













a


)


(


x













b


)










x

[

a

,

b

]

\because x\in[a,b]















x













[


a


,




b


]









M

(

x

)

h

(

x

)

0

\therefore M(x)h(x)\ge0















M


(


x


)


h


(


x


)













0





,且



x

(

a

,

b

)

\exist x\in(a,b)









x













(


a


,




b


)





使得



M

(

x

)

h

(

x

)

>

0

M(x)h(x)>0






M


(


x


)


h


(


x


)




>








0





,从而



a

b

M

(

x

)

h

(

x

)

d

x

>

0

\int_a^bM(x)h(x)\text{d}x>0


















a








b




















M


(


x


)


h


(


x


)



d



x




>








0





,假设不成立。

  • 证明2:不存在



    M

    (

    x

    )

    M(x)






    M


    (


    x


    )





    使得若



    h

    (

    x

    )

    h(x)






    h


    (


    x


    )





    为任意函数时均有



    a

    b

    M

    (

    x

    )

    h

    (

    x

    )

    d

    x

    =

    C

    0

    \int_a^bM(x)h(x)\text{d}x=C\neq0


















    a








    b




















    M


    (


    x


    )


    h


    (


    x


    )



    d



    x




    =








    C
























    =









    0





同理令



h

(

x

)

=

k

/

M

(

x

)

h(x)=k/M(x)






h


(


x


)




=








k


/


M


(


x


)





,则





a

b

M

(

x

)

h

(

x

)

d

x

=

k

(

b

a

)

≢

C

\int_a^bM(x)h(x)\text{d}x=k(b-a)\not\equiv C


















a








b




















M


(


x


)


h


(


x


)



d



x




=








k


(


b













a


)




































C







假设不成立。



可交换性证明

  • 变分和微分





d

d

x

δ

y

=

d

d

x

(

ϵ

η

(

x

)

)

=

ϵ

d

d

x

η

(

x

)

δ

d

d

x

y

=

y

(

x

)

y

0

(

x

)

=

η

(

x

)

\begin{aligned} &\frac{\text{d}}{\text{d}x}\delta y=\frac{\text{d}}{\text{d}x}(\epsilon\eta(x)) =\epsilon\frac{\text{d}}{\text{d}x}\eta(x) \\ &\delta\frac{\text{d}}{\text{d}x}y=y'(x)-y_0′(x)=\eta'(x) \end{aligned}



























































d



x















d





















δy




=
















d



x















d





















(


ϵη


(


x


))




=




ϵ














d



x















d





















η


(


x


)










δ














d



x















d





















y




=





y






















(


x


)










y










0





























(


x


)




=





η






















(


x


)






















  • 变分和积分





δ

a

b

y

(

x

)

d

x

=

a

b

y

(

x

)

d

x

a

b

y

0

(

x

)

d

x

=

a

b

y

(

x

)

y

0

(

x

)

d

x

=

a

b

δ

y

(

x

)

d

x

\begin{aligned} &\delta\int_a^by(x)\text{d}x=\int_a^by(x)\text{d}x-\int_a^by_0(x)\text{d}x =\int_a^by(x)-y_0(x)\text{d}x=\int_a^b\delta y(x)\text{d}x \end{aligned}









































δ
















a








b




















y


(


x


)



d



x




=
















a








b




















y


(


x


)



d



x





















a








b





















y










0


















(


x


)



d



x




=
















a








b




















y


(


x


)










y










0


















(


x


)



d



x




=
















a








b




















δy


(


x


)



d



x
























泛函的拉格朗日乘子法证明





J

=

a

b

f

(

y

,

y

)

d

x

J=\int_a^bf(y,y’)\text{d}x






J




=




















a








b




















f


(


y


,





y






















)



d



x







若满足约束



g

(

y

,

y

)

=

0

g(y,y’)=0






g


(


y


,





y






















)




=








0





,则





δ

g

=

g

y

δ

y

+

g

y

δ

y

=

0

(

2

1

)

δ

J

=

a

b

δ

f

(

y

,

y

)

d

x

+

λ

δ

g

(

y

,

y

)

=

0

(

2

2

)

δ

f

(

y

,

y

)

=

f

y

δ

y

+

f

y

δ

y

=

0

(

2

3

)

\begin{aligned} & \delta g=\frac{\partial g}{\partial y}\delta y+\frac{\partial g}{\partial y’}\delta y’=0\quad(2-1) \\ & \delta J=\int_a^b\delta f(y,y’)\text{d}x+\lambda\delta g(y,y’)=0\quad(2-2) \\ & \delta f(y,y’)=\frac{\partial f}{\partial y}\delta y+\frac{\partial f}{\partial y’}\delta y’=0\quad(2-3) \\ \end{aligned}





















































δ


g




=


















y

















g




















δy




+



















y





































g




















δ



y
























=




0




(


2









1


)










δ


J




=
















a








b




















δ


f


(


y


,





y






















)



d



x




+




λ


δ


g


(


y


,





y






















)




=




0




(


2









2


)










δ


f


(


y


,





y






















)




=


















y

















f




















δy




+



















y





































f




















δ



y
























=




0




(


2









3


)
























由(2-1)(2-3)式可得





f

y

=

λ

g

y

f

y

=

λ

g

y

δ

f

(

y

,

y

)

=

f

y

δ

y

+

f

y

δ

y

=

f

y

δ

y

+

f

y

(

g

y

g

y

)

=

(

f

y

+

λ

g

y

)

δ

y

\begin{aligned} \frac{\partial f}{\partial y}&=-\lambda\frac{\partial g}{\partial y} \\ \frac{\partial f}{\partial y’}&=-\lambda\frac{\partial g}{\partial y’} \\ \delta f(y,y’)&=\frac{\partial f}{\partial y}\delta y +\frac{\partial f}{\partial y’}\delta y’ \\ &=\frac{\partial f}{\partial y}\delta y +\frac{\partial f}{\partial y’}(-\frac{\frac{\partial g}{\partial y}}{\frac{\partial g}{\partial y’}}) \\ &=(\frac{\partial f}{\partial y}+\lambda\frac{\partial g}{\partial y})\delta y \\ \end{aligned}






























y

















f









































y





































f


























δ


f


(


y


,





y






















)









































=







λ
















y

















g






























=







λ

















y





































g






























=


















y

















f




















δy




+



















y





































f




















δ



y
































=


















y

















f




















δy




+



















y





































f




















(
































y







































g
















































y



















g







































)












=




(
















y

















f






















+




λ
















y

















g




















)


δy
























于是可以构造拉格朗日函数





L

(

y

,

y

)

=

f

(

y

,

y

)

+

λ

g

(

y

,

y

)

L

y

=

f

y

+

λ

g

y

\begin{aligned} & L(y,y’)=f(y,y’)+\lambda g(y,y’) \\ & \frac{\partial L}{\partial y}=\frac{\partial f}{\partial y}+\lambda\frac{\partial g}{\partial y} \\ \end{aligned}















































L


(


y


,





y






















)




=




f


(


y


,





y






















)




+




λ


g


(


y


,





y






















)
























y

















L






















=


















y

















f






















+




λ
















y

















g










































需要注意的是,多元函数中



z

=

f

(

x

0

,

y

0

)

z=f(x_0,y_0)






z




=








f


(



x










0


















,





y










0


















)





是个点,所以



λ

\lambda






λ





是个常数;而



δ

y

\delta y






δy





是个函数,所以泛函中的



λ

\lambda






λ





也是个函数。



版权声明:本文为qq_34288751原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。