compact在matlab中应用,基于支持向量机的二次函数在Matlab中的应用.doc

  • Post author:
  • Post category:其他


基于支持向量机的二次函数在Matlab中的应用

>> format compact;

>> x = (-1:0.1:1)’;

>> y = -x.^2;

>> model = svmtrain(y,x,’-s 3 -t 2 -c 2.2 -g 2.8 -p 0.01′);

. WARNING: using -h 0 may be faster

optimization finished, #iter = 104

nu = 0.224906

obj = -0.675055, rho = 0.698514

nSV = 9, nBSV = 2

>> [py , mse] = svmpredict( y , x , model );

Mean squared error = 9.52768e-005 (regression)

Squared correlation coefficient = 0.999184 (regression)

>> figure;

>> plot(x , y, ‘o’);

>> hold on;

>> plot(x, py, ‘r*’);

>> legend(‘原始数据’,’回归数据’);

>> grid on;

>> testx = [1.1;1.2;1.3];

>> display(‘真实数据’)

真实数据

>> testy = -testx.^2

testy =

-1.2100

-1.4400

-1.6900

>> [ ptesty , tmse ] = svmpredict( testy , testx , model);

Mean squared error = 0.0976693 (regression)

Squared correlation coefficient = 0.914542 (regression)

>> display(‘预测数据’);

预测数据

>> ptesty

ptesty =

-1.1087

-1.1913

-1.2200