文章目录
一、矩阵类型
1、转置矩阵:
A
=
(
3
2
1
1
2
3
2
3
1
)
A = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \\ 2 & 3 & 1 \\ \end{pmatrix}
A
=
⎝
⎛
3
1
2
2
2
3
1
3
1
⎠
⎞
,
A
T
=
(
3
1
2
2
2
3
1
3
1
)
A^T = \begin{pmatrix} 3 & 1 & 2 \\ 2 & 2 & 3 \\ 1 & 3 & 1 \\ \end{pmatrix}
A
T
=
⎝
⎛
3
2
1
1
2
3
2
3
1
⎠
⎞
,
T
T
T
表示矩阵的转置
2、对角矩阵:
(
2
0
0
0
3
0
0
0
1
)
\begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}
⎝
⎛
2
0
0
0
3
0
0
0
1
⎠
⎞
,
对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵,常写为
d
i
a
g
(
a
1
,
a
2
,
a
3
,
.
.
.
,
a
n
)
\mathrm{diag}(a_1,a_2,a_3,…,a_n)
diag
(
a
1
,
a
2
,
a
3
,
…
,
a
n
)
3、上下三角矩阵:
(
1
2
3
0
2
3
0
0
1
)
\begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 1 \\ \end{pmatrix}
⎝
⎛
1
0
0
2
2
0
3
3
1
⎠
⎞
,
(
1
0
0
3
2
0
2
3
1
)
\begin{pmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \\ 2 & 3 & 1 \\ \end{pmatrix}
⎝
⎛
1
3
2
0
2
3
0
0
1
⎠
⎞
4、单位矩阵:
(
1
0
0
0
1
0
0
0
1
)
=
E
=
I
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} = E = I
⎝
⎛
1
0
0
0
1
0
0
0
1
⎠
⎞
=
E
=
I
5、
正交矩阵:若
n
n
n
阶方阵
A
A
A
,满足
A
A
T
=
E
AA^T=E
A
A
T
=
E
,称
A
A
A
为正交矩阵
6、
对称矩阵:
A
T
=
T
A^T=T
A
T
=
T
二、矩阵的基本运算
1、加法、减法:矩阵对应元素位置直接进行加减法运算,矩阵形状不发生改变;
2、乘法:左行乘右列(矩阵能够进行乘法的前提是:矩阵的左行等于右列);
三、矩阵运算相关性质
矩阵运算不一定满足交换律:
A
B
≠
B
A
AB \not= BA
A
B
=
B
A
数乘分配律:
(
λ
+
μ
)
A
=
λ
A
+
μ
A
(\lambda + \mu)A = \lambda A + \mu A
(
λ
+
μ
)
A
=
λ
A
+
μ
A
λ
(
A
+
B
)
=
λ
A
+
λ
B
\lambda(A+ B) = \lambda A + \lambda B
λ
(
A
+
B
)
=
λ
A
+
λ
B
矩阵分配律:
(
A
B
)
C
=
A
(
B
C
)
(AB)C = A(BC)
(
A
B
)
C
=
A
(
BC
)
A
(
B
+
C
)
A
B
+
A
C
A(B+C) AB + AC
A
(
B
+
C
)
A
B
+
A
C
(
B
+
C
)
A
=
B
A
+
C
A
(B + C)A = BA + CA
(
B
+
C
)
A
=
B
A
+
C
A
E
A
=
A
E
=
A
EA =AE =A
E
A
=
A
E
=
A
转置相关性质:
(
A
T
)
T
=
A
(A^T)^T = A
(
A
T
)
T
=
A
(
A
+
B
)
T
=
A
T
+
B
T
(A + B)^T = A^T + B^T
(
A
+
B
)
T
=
A
T
+
B
T
(
A
B
)
T
=
B
T
A
T
(AB)^T = B^TA^T
(
A
B
)
T
=
B
T
A
T
(有些特殊)
模的性质:
∣
A
⋅
B
∣
=
∣
A
∣
⋅
∣
B
∣
|A \cdot B| = |A| \cdot |B|
∣
A
⋅
B
∣
=
∣
A
∣
⋅
∣
B
∣
∣
λ
A
∣
=
λ
n
∣
A
∣
|\lambda A| = \lambda^n|A|
∣
λ
A
∣
=
λ
n
∣
A
∣
(
n
n
n
为矩阵
A
A
A
的阶数)