文章首发于本人的
个人博客
这代码借鉴了《Python科学计算》,进行了改动
import scipy.optimize as opt
import numpy as np
points=[]
def obj_func(p):
x,y=p
z=(1-x)**2+100*(y-x**2)**2
points.append((x,y,z))
return z
#偏导数,有些优化方法用得到,有些用不到
def fprime(p):
x,y=p
dx=-2+2*x-400*x*(y-x**2)
dy=200*y-200*x**2
return np.array([dx,dy])
init_point=(-2,-2)
#这两种优化方法没用到偏导
#result=opt.fmin(obj_func,init_point)
#result=opt.fmin_powell(obj_func,init_point)
#用到偏导的:
#result=opt.fmin_cg(obj_func,init_point,fprime=fprime)
#result=opt.fmin_bfgs(obj_func,init_point,fprime=fprime)
result=opt.fmin_tnc(obj_func,init_point,fprime=fprime)
#result=opt.fmin_l_bfgs_b(obj_func,init_point,fprime=fprime)
#其它
#result=opt.fmin_cobyla(obj_func,init_point,[])
print(result)
### 绘图
import pylab as pl
p=np.array(points)
xmin,xmax=np.min(p[:,0])-1,np.max(p[:,0])+1
ymin,ymax=np.min(p[:,1]),np.max(p[:,1])+1
Y,X=np.ogrid[ymin:ymax:500j,xmin:xmax:500j]
Z=np.log10(obj_func((X,Y)))
zmin,zmax=np.min(Z),np.max(Z)
pl.imshow(Z,extent=(xmin,xmax,ymin,ymax),origin="bottom",aspect="auto")
pl.plot(p[:,0],p[:,1])
pl.scatter(p[:,0],p[:,1],c=range(len(p)))
pl.xlim(xmin,xmax)
pl.ylim(ymin,ymax)
pl.show()
下面这2个优化方法的展示:
版权声明:本文为guofei9987原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。