- 随机过程本质就是一组与时间相关的随机变量,描述系统在 一系列时刻所处的状态。因此,我们首先补充关于多维随机变量(随机向量)的内容
- 注:本文中加粗大写字母代表矩阵(如 
A , B , L \pmb{A,B,L} 
 A,B,LA,B,LA,B,L) 或随机向量(如X , Y \pmb{X,Y} 
 X,YX,YX,Y);加粗小写字母代表数的向量(如a , b \pmb{a,b} 
 a,ba,ba,b);普通大写字母代表一个随机变量(如X , Y X,Y 
 X,Y)
1. 多维 r.v. 的期望和方差
- 记多维 r.v.s. 为 
X = [ X 1 X 2 ⋮ X n ] , Y = [ Y 1 Y 2 ⋮ Y n ] \pmb{X} = \begin{bmatrix}X_1\\X_2\\\vdots \\X_n \end{bmatrix}, \pmb{Y} = \begin{bmatrix}Y_1\\Y_2\\\vdots \\Y_n \end{bmatrix} 
 XXX=⎣⎢⎢⎢⎡X1X2⋮Xn⎦⎥⎥⎥⎤,YYY=⎣⎢⎢⎢⎡Y1Y2⋮Yn⎦⎥⎥⎥⎤- 期望:- E - X - = - [ - E - X - 1 - E - X - 2 - ⋮ - E - X - n - ] - E\pmb{X} = \begin{bmatrix}EX_1\\EX_2\\\vdots \\EX_n \end{bmatrix} 
 EXXX=⎣⎢⎢⎢⎡EX1EX2⋮EXn⎦⎥⎥⎥⎤
- 方差(矩阵):
 - Var - ( - X - ) - = - ( - Cov - ( - X - i - , - X - j - ) - ) - n - × - n - = - ( - E - [ - ( - X - i - − - E - X - i - ) - ( - X - j - − - E - X - j - ) - ] - ) - n - × - n - = - E - [ - ( - X - − - E - X - ) - ( - X - − - E - X - ) - ⊤ - ] - \begin{aligned} \text{Var}(\pmb{X}) &= \big(\text{Cov}(X_i,X_j)\big)_{n\times n} \\ &=\big(E\big[(X_i-EX_i)(X_j-EX_j)\big]\big)_{n\times n} \\ &= E\big[(\pmb{X}-E\pmb{X})(\pmb{X}-E\pmb{X})^\top \big]\end{aligned} 
 Var(XXX)=(Cov(Xi,Xj))n×n=(E[(Xi−EXi)(Xj−EXj)])n×n=E[(XXX−EXXX)(XXX−EXXX)⊤]
- 协方差(矩阵):
 - Cov - ( - X - , - Y - ) - = - ( - Cov - ( - X - i - , - Y - j - ) - ) - n - × - n - = - ( - E - [ - ( - X - i - − - E - X - i - ) - ( - Y - j - − - E - Y - j - ) - ] - ) - n - × - n - = - E - [ - ( - X - − - E - X - ) - ( - Y - − - E - Y - ) - ⊤ - ] - \begin{aligned} \text{Cov}(\pmb{X},\pmb{Y}) &= (\text{Cov}(X_i,Y_j))_{n\times n} \\ &=\big(E\big[(X_i-EX_i)(Y_j-EY_j)\big]\big)_{n\times n} \\ &= E\big[(\pmb{X}-E\pmb{X})(\pmb{Y}-E\pmb{Y})^\top\big] \end{aligned} 
 Cov(XXX,YYY)=(Cov(Xi,Yj))n×n=(E[(Xi−EXi)(Yj−EYj)])n×n=E[(XXX−EXXX)(YYY−EYYY)⊤]
 
- 方差矩阵性质: 
Var ( A X ) = A Var ( X ) A ⊤ \text{Var}(\pmb{AX}) = \pmb{A} \text{Var}(\pmb{X})\pmb{A}^\top 
 Var(AXAXAX)=AAAVar(XXX)AAA⊤,证明如下
 Var ( A X ) = E [ ( A X − E A X ) ( A X − E A X ) ⊤ ] = E [ ( A X − A E X ) ( A X − A E X ) ⊤ ] = A E [ ( X − E X ) ( A ( X − E X ) ⊤ ) ] = A E [ ( X − E X ) ( X − E X ) ⊤ A ⊤ ] = A E [ ( X − E X ) ( X − E X ) ⊤ ] A ⊤ = A Var ( X ) A ⊤ \begin{aligned} \text{Var}(\pmb{AX}) &= E\big[(\pmb{AX}-E\pmb{AX})(\pmb{AX}-E\pmb{AX})^\top\big]\\ &= E\big[(\pmb{AX}-\pmb{A}E\pmb{X})(\pmb{AX}-\pmb{A}E\pmb{X})^\top\big]\\ &= \pmb{A}E\big[(\pmb{X}-E\pmb{X})(\pmb{A}(\pmb{X}-E\pmb{X})^\top)\big]\\ &= \pmb{A}E\big[(\pmb{X}-E\pmb{X})(\pmb{X}-E\pmb{X})^\top\pmb{A}^\top\big]\\ &= \pmb{A}E\big[(\pmb{X}-E\pmb{X})(\pmb{X}-E\pmb{X})^\top\big]\pmb{A}^\top\\ &=\pmb{A} \text{Var}(\pmb{X})\pmb{A}^\top \end{aligned} 
 Var(AXAXAX)=E[(AXAXAX−EAXAXAX)(AXAXAX−EAXAXAX)⊤]=E[(AXAXAX−AAAEXXX)(AXAXAX−AAAEXXX)⊤]=AAAE[(XXX−EXXX)(AAA(XXX−EXXX)⊤)]=AAAE[(XXX−EXXX)(XXX−EXXX)⊤AAA⊤]=AAAE[(XXX−EXXX)(XXX−EXXX)⊤]AAA⊤=AAAVar(XXX)AAA⊤ 说明:随机变量的线性组合仍是随机变量,对于一组随机变量,或者 “随机向量” 而言,可以对它们进行线性组合得到一个新的 “随机向量”,并用矩阵形式表示为A r × n X n × 1 = X r × 1 ′ \pmb{A}_{r\times n}\pmb{X}_{n\times 1} = \pmb{X}’_{r\times 1} 
 AAAr×nXXXn×1=XXXr×1′,即上式中A X \pmb{AX} 
 AXAXAX
2. 多维 r.v. 的分布函数
- 对于多维 r.v.s.(随机向量) 
X = [ X 1 X 2 ⋮ X n ] \pmb{X} = \begin{bmatrix}X_1\\X_2\\\vdots \\X_n \end{bmatrix} 
 XXX=⎣⎢⎢⎢⎡X1X2⋮Xn⎦⎥⎥⎥⎤,其分布函数定义为
 F ( X ) = F ( X 1 , X 2 , . . . , X n ) = P ( X 1 ≤ x 1 , X 2 ≤ x 2 , . . . , X n ≤ x n ) = P ( X ≤ x ) F(\pmb{X}) = F(X_1,X_2,…,X_n) = P(X_1\leq x_1,X_2 \leq x_2,…,X_n\leq x_n) = P(\pmb{X} \leq \pmb{x}) 
 F(XXX)=F(X1,X2,...,Xn)=P(X1≤x1,X2≤x2,...,Xn≤xn)=P(XXX≤xxx)
- 两道例题
- 令 
X t = ξ c o s t X_t = \xi cost 
 Xt=ξcost,其中P ( ξ = 1 ) = P ( ξ = 2 ) = P ( ξ = 3 ) = 1 3 , t ∈ R P(\xi=1)=P(\xi=2)=P(\xi=3)=\frac{1}{3},t\in\mathbb{R} 
 P(ξ=1)=P(ξ=2)=P(ξ=3)=31,t∈R,这样就可以通过选取不同的实数t t 
 t 得到任意维随机向量{ X t } \{X_t\} 
 {Xt}。求一维分布F ( x ; π 4 ) , F ( x ; π 2 ) F(x;\frac{\pi}{4}),F(x;\frac{\pi}{2}) 
 F(x;4π),F(x;2π) 和二维分布F ( x 1 , x 2 ; 0 , π 3 ) F(x_1,x_2;0,\frac{\pi}{3}) 
 F(x1,x2;0,3π)
- 令 
X t = ξ + η t X_t = \xi +\eta t 
 Xt=ξ+ηt,其中ξ , η \xi,\eta 
 ξ,η 为互相独立的标准正态分布,t ∈ R t\in\mathbb{R} 
 t∈R,这样就可以通过选取不同的实数t t 
 t 得到任意维随机向量{ X t } \{X_t\} 
 {Xt},求一维分布和二维分布
  
 注:右边第1题答案中第3问,分布列应该是X t = π 3 = 1 2 , 1 , 3 2 X_{t=\frac{\pi}{3}} = \frac{1}{2},1,\frac{3}{2} 
 Xt=3π=21,1,23,订正一下
 
- 令 
3. 多维 r.v. 的函数(统计量)的概率密度
- 以二维情况为例,设二维 r.v. 
X = ( X 1 , X 2 ) \pmb{X}=(X_1,X_2) 
 XXX=(X1,X2) 的概率密度函数为
 f X ( x 1 , x 2 ) = { f X G ( x 1 , x 2 ) , ( x 1 , x 2 ) ∈ G ⊂ R 0 , ( x 1 , x 2 ) ∉ G f_{\mathbf{X}}(x_1,x_2) = \left\{ \begin{aligned} &f_{\mathbf{X}}^G(x_1,x_2) &&,(x_1,x_2)\in G \subset \mathbb{R} \\ &0 &&,(x_1,x_2)\notin G\\ \end{aligned} \right. 
 fX(x1,x2)={fXG(x1,x2)0,(x1,x2)∈G⊂R,(x1,x2)∈/G 当有{ Y 1 = g 1 ( X 1 , X 2 ) Y 2 = g 2 ( X 1 , X 2 ) \left\{\begin{aligned}&Y_1 = g_1(X_1,X_2) \\&Y_2 = g_2(X_1,X_2) \end{aligned}\right. 
 {Y1=g1(X1,X2)Y2=g2(X1,X2) 时,求Y = ( Y 1 , Y 2 ) \pmb{Y} = (Y_1,Y_2) 
 YYY=(Y1,Y2) 的概率密度函数f Y ( y 1 , y 2 ) f_{\mathbf{Y}}(y_1,y_2) 
 fY(y1,y2)
- 遵循以下过程求解
- 依题意,对于 
X 1 , X 2 X_1,X_2 
 X1,X2 的任意取值x 1 , x 2 x_1,x_2 
 x1,x2,变换T T 
 T 为
 T : { y 1 = g 1 ( x 1 , x 2 ) y 2 = g 2 ( x 1 , x 2 ) T:\left\{ \begin{aligned} &y_1 = g_1(x_1,x_2) \\ &y_2 = g_2(x_1,x_2) \end{aligned} \right. 
 T:{y1=g1(x1,x2)y2=g2(x1,x2) 利用变换T T 
 T,把取值范围变换过来,即利用所有概率非0的( x 1 , x 2 ) (x_1,x_2) 
 (x1,x2) 找出所有概率非零的( y 1 , y 2 ) (y_1,y_2) 
 (y1,y2)
 G ∗ = T ( G ) G^* = T(G) 
 G∗=T(G)
- 下面求 
T T 
 T 的反函数(即利用y \pmb{y} 
 yyy 表示x \pmb{x} 
 xxx),先假设有唯一的反函数
 { x 1 = x 1 ( y 1 , y 2 ) x 2 = x 2 ( y 1 , y 2 ) \left\{ \begin{aligned} &x_1 = x_1(y_1,y_2) \\ &x_2 = x_2(y_1,y_2) \end{aligned} \right. 
 {x1=x1(y1,y2)x2=x2(y1,y2)
- 计算 Jacobi 行列式 (Jacobi 矩阵的行列式)
 ∣ J ∣ = ∣ ∂ ( x 1 , x 2 ) ∂ ( y 1 , y 2 ) ∣ = ∣ ∂ x 1 ∂ y 1 ∂ x 2 ∂ y 1 ∂ x 1 ∂ y 2 ∂ x 2 ∂ y 2 ∣ |\pmb{J}| = \begin{vmatrix} \frac{\partial(x_1,x_2)}{\partial(y_1,y_2)}\end{vmatrix} = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_2}{\partial y_1} \\ \frac{\partial x_1}{\partial y_2} & \frac{\partial x_2}{\partial y_2} \end{vmatrix} 
 ∣JJJ∣=∣∣∣∂(y1,y2)∂(x1,x2)∣∣∣=∣∣∣∣∣∂y1∂x1∂y2∂x1∂y1∂x2∂y2∂x2∣∣∣∣∣ 得到Y = { Y 1 , Y 2 } \pmb{Y} = \{Y_1,Y_2\} 
 YYY={Y1,Y2} 的 p.d.f. 为
 f Y ( y 1 , y 2 ) = { f X G ( x 1 ( y 1 , y 2 ) , x 2 ( y 1 , y 2 ) ) ∣ J ∣ , ( y 1 , y 2 ) ∈ G ∗ 0 , ( y 1 , y 2 ) ∉ G ∗ f_{\mathbf{Y}}(y_1,y_2) = \left\{ \begin{aligned} &f_{\mathbf{X}}^G\big(x_1(y_1,y_2),x_2(y_1,y_2)\big) |\pmb{J}| &&,(y_1,y_2)\in G^* \\ &0 &&,(y_1,y_2)\notin G^*\\ \end{aligned} \right. 
 fY(y1,y2)={fXG(x1(y1,y2),x2(y1,y2))∣JJJ∣0,(y1,y2)∈G∗,(y1,y2)∈/G∗
- 若第 2 步中的反函数不唯一,则对每个反函数 
x ( i ) \pmb{x}^{(i)} 
 xxx(i) 计算对应的 Jacobi 行列式∣ J ( i ) ∣ , i = 1 , 2 , . . . , n |\pmb{J}^{(i)}|,i=1,2,…,n 
 ∣JJJ(i)∣,i=1,2,...,n,最后得到Y = { Y 1 , Y 2 } \pmb{Y} = \{Y_1,Y_2\} 
 YYY={Y1,Y2} 的 p.d.f. 为
 f Y ( y 1 , y 2 ) = { ∑ i = 1 n f X G ( x 1 ( i ) ( y 1 , y 2 ) , x 2 ( i ) ( y 1 , y 2 ) ) ∣ J ( i ) ∣ , ( y 1 , y 2 ) ∈ G ∗ 0 , ( y 1 , y 2 ) ∉ G ∗ f_{\mathbf{Y}}(y_1,y_2) = \left\{ \begin{aligned} &\sum_{i=1}^nf_{\mathbf{X}}^G\big(x_1^{(i)}(y_1,y_2),x_2^{(i)}(y_1,y_2)\big) |\pmb{J}^{(i)}| &&,(y_1,y_2)\in G^* \\ &0 &&,(y_1,y_2)\notin G^*\\ \end{aligned} \right. 
 fY(y1,y2)=⎩⎪⎪⎨⎪⎪⎧i=1∑nfXG(x1(i)(y1,y2),x2(i)(y1,y2))∣JJJ(i)∣0,(y1,y2)∈G∗,(y1,y2)∈/G∗
 
- 依题意,对于 
- 例题:
- 
设 r.v.s { X , Y } \{X,Y\} {X,Y} 有 X , Y ∼ ϵ ( 1 ) X,Y\sim \epsilon(1) X,Y∼ϵ(1) 且相互独立,对于如下线性变换,求 g ( u , v ) g(u,v) g(u,v) 的 p.d.f 
 { U = X + Y V = X / Y \left\{ \begin{aligned} &U = X+Y \\ &V = X/Y \end{aligned} \right. {U=X+YV=X/Y 注意 X , Y X,Y X,Y 独立 ⇔ F X , Y ( x , y ) = F X ( x ) F Y ( y ) \Leftrightarrow F_{X,Y}(x,y) = F_X(x)F_Y(y) ⇔FX,Y(x,y)=FX(x)FY(y),答案如下 
  
- 
设 r.v.s { X , Y } \{X,Y\} {X,Y} 有 X , Y ∼ N ( 0 , σ 2 ) X,Y\sim N(0,\sigma^2) X,Y∼N(0,σ2) 且相互独立,对于如下线性变换,求 g ( u , v ) g(u,v) g(u,v) 的 p.d.f 
 { U = X 2 + Y 2 V = X / Y \left\{ \begin{aligned} &U = \sqrt{X^2+Y^2} \\ &V = X/Y \end{aligned} \right. {U=X2+Y2V=X/Y 注意 X , Y X,Y X,Y 独立 ⇔ F X , Y ( x , y ) = F X ( x ) F Y ( y ) \Leftrightarrow F_{X,Y}(x,y) = F_X(x)F_Y(y) ⇔FX,Y(x,y)=FX(x)FY(y),答案如下 
  
 
- 
