图片识别——汉明距离

  • Post author:
  • Post category:其他

    汉明距离是以理查德·卫斯里·汉明的名字命名的。在信息论中,两个等长字符串之间的汉明距离是两个字符串对应位置的不同字符的个数。换句话说,它就是将一个字符串变换成另外一个字符串所需要替换的字符个数。

    例如:

    1011101 与 1001001 之间的汉明距离是 2。

    2143896 与 2233796 之间的汉明距离是 3。

    “toned” 与 “roses” 之间的汉明距离是 3。

    汉明重量是字符串相对于同样长度的零字符串的汉明距离,也就是说,它是字符串中非零的元素个数:对于二进制字符串来说,就是 1 的个数,所以 11101 的汉明重量是 4。

    如果把a和b两个单词看作是向量空间中的元素,则它们之间的汉明距离等于它们汉明重量的差a-b。如果是二进制字符串a和b,汉明距离等于它们汉明重量的和a+b或者a和b汉明重量的异或a XOR b。汉明距离也等于一个n维的超立方体上两个顶点间的曼哈顿距离,n指的是单词的长度。

    汉明距离可以在通信中累计定长二进制字中发生翻转的错误数据位,所以它也被称为信号距离。汉明重量分析在包括信息论、编码理论、密码学等领域都有应用。但是,如果要比较两个不同长度的字符串,不仅要进行替换,而且要进行插入与删除的运算,在这种场合下,通常使用更加复杂的编辑距离等算法。 


版权声明:本文为mylovepan原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。