# coding: UTF-8
import torch
import time
import torch.nn as nn
import torch.nn.functional as F
from pytorch_pretrained_bert import BertModel, BertTokenizer, BertConfig, BertAdam
import pandas as pd
import numpy as np
from tqdm import tqdm
import re
from torch.utils.data import *
path = "data/"
bert_path = "chinese_roberta_wwm_ext_pytorch/"
tokenizer = BertTokenizer(vocab_file=bert_path + "vocab.txt") # 初始化分词器
#预处理数据集
input_ids = [] # input char ids
input_types = [] # segment ids
input_masks = [] # attention mask
label = [] # 标签
pad_size = 32 # 也称为 max_len (前期统计分析,文本长度最大值为38,取32即可覆盖99%)
def process(path):
df = pd.read_csv(path, usecols=['a','cate'])
input_ids,input_types,input_masks,label = [],[],[],[]
for a,cate in df[['a','cate']].values:
# print(a,b)
if pd.isnull(a):
a = "0"
a = re.sub('[1-9]', '0', a).replace("\n", "")
a = re.sub('[a-zA-Z]', 'A', a).replace("\r", "")
a = a.replace(" ", "")
tokens = ["<CLS>"] + list(a) + ["<SEP>"]
# 得到input_id, seg_id, att_mask
ids = tokenizer.convert_tokens_to_ids(tokens)
# print(ids)
types = [0] *(len(ids))
masks = [1] * len(ids)
# 短则补齐,长则切断
if len(ids) < pad_size:
types = types + [1] * (pad_size - len(ids)) # mask部分 segment置为1
masks = masks + [0] * (pad_size - len(ids))
ids = ids + [0] * (pad_size - len(ids))
else:
types = types[:pad_size]
masks = masks[:pad_size]
ids = ids[:pad_size]
input_ids.append(ids)
input_types.append(types)
input_masks.append(masks)
# print(len(ids), len(masks), len(types))
assert len(ids) == len(masks) == len(types) == pad_size
label.append([int(cate)])
return input_ids,input_types,input_masks,label
input_ids,input_types,input_masks,label = process("data/train.csv")
#随机打乱索引排序
# 随机打乱索引
random_order = list(range(len(input_ids)))
np.random.seed(2020) # 固定种子
np.random.shuffle(random_order)
# print(random_order[:10])
# 4:1 划分训练集和测试集
input_ids_train = np.array([input_ids[i] for i in random_order[:int(len(input_ids)*0.8)]])
input_types_train = np.array([input_types[i] for i in random_order[:int(len(input_ids)*0.8)]])
input_masks_train = np.array([input_masks[i] for i in random_order[:int(len(input_ids)*0.8)]])
y_train = np.array([label[i] for i in random_order[:int(len(input_ids) * 0.8)]])
# print(input_ids_train.shape, input_types_train.shape, input_masks_train.shape, y_train.shape)
input_ids_test = np.array([input_ids[i] for i in random_order[int(len(input_ids)*0.8):]])
input_types_test = np.array([input_types[i] for i in random_order[int(len(input_ids)*0.8):]])
input_masks_test = np.array([input_masks[i] for i in random_order[int(len(input_ids)*0.8):]])
y_test = np.array([label[i] for i in random_order[int(len(input_ids) * 0.8):]])
# print(input_ids_test.shape, input_types_test.shape, input_masks_test.shape, y_test.shape)
BATCH_SIZE = 16
train_data = TensorDataset(torch.LongTensor(input_ids_train),
torch.LongTensor(input_types_train),
torch.LongTensor(input_masks_train),
torch.LongTensor(y_train))
train_sampler = RandomSampler(train_data)
train_loader = DataLoader(train_data, sampler=train_sampler, batch_size=BATCH_SIZE)
test_data = TensorDataset(torch.LongTensor(input_ids_test),
torch.LongTensor(input_types_test),
torch.LongTensor(input_masks_test),
torch.LongTensor(y_test))
test_sampler = SequentialSampler(test_data)
test_loader = DataLoader(test_data, sampler=test_sampler, batch_size=BATCH_SIZE)
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.bert = BertModel.from_pretrained(bert_path) # /bert_pretrain/
for param in self.bert.parameters():
param.requires_grad = True # 每个参数都要 求梯度
self.fc = nn.Linear(768, 9) # 768 -> 2
def forward(self, x):
context = x[0] # 输入的句子 (ids, seq_len, mask)
types = x[1]
mask = x[2] # 对padding部分进行mask,和句子相同size,padding部分用0表示,如:[1, 1, 1, 1, 0, 0]
_, pooled = self.bert(context, token_type_ids=types,
attention_mask=mask,
output_all_encoded_layers=False) # 控制是否输出所有encoder层的结果
out = self.fc(pooled) # 得到10分类
return out
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Model().to(DEVICE)
# print(model)
param_optimizer = list(model.named_parameters()) # 模型参数名字列表
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]
NUM_EPOCHS = 30
optimizer = BertAdam(optimizer_grouped_parameters,
lr=2e-5,
warmup=0.05,
t_total=len(train_loader) * NUM_EPOCHS
)
# optimizer = torch.optim.Adam(model.parameters(), lr=2e-5) # 简单起见,可用这一行代码完事
def train(model, device, train_loader, optimizer, epoch): # 训练模型
model.train()
best_acc = 0.0
for batch_idx, (x1,x2,x3, y) in enumerate(train_loader):
# print(batch_idx,(x1,x2,x3,y))
start_time = time.time()
y=y+4
x1,x2,x3, y = x1.to(device), x2.to(device), x3.to(device), y.to(device)
y_pred = model([x1, x2, x3]) # 得到预测结果
model.zero_grad() # 梯度清零
loss = F.cross_entropy(y_pred, y.squeeze()) # 得到loss
loss.backward()
optimizer.step()
if(batch_idx + 1) % 10 == 0: # 打印loss
print('Train Epoch: {} [{}/{} ({:.2f}%)]tLoss: {:.6f}'.format(epoch, (batch_idx+1) * len(x1),
len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.item())) # 记得为loss.item()
def test(model, device, test_loader): # 测试模型, 得到测试集评估结果
model.eval()
test_loss = 0.0
acc = 0
for batch_idx, (x1,x2,x3, y) in enumerate(test_loader):
x1,x2,x3, y = x1.to(device), x2.to(device), x3.to(device), y.to(device)
y = y+4
with torch.no_grad():
y_ = model([x1,x2,x3])
test_loss += F.cross_entropy(y_, y.squeeze())
pred = y_.max(-1, keepdim=True)[1] # .max(): 2输出,分别为最大值和最大值的index
acc += pred.eq(y.view_as(pred)).sum().item() # 记得加item()
test_loss /= len(test_loader)
print('nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)'.format(
test_loss, acc, len(test_loader.dataset),
100. * acc / len(test_loader.dataset)))
return acc / len(test_loader.dataset)
best_acc = 0.0
PATH = 'roberta_model.pth' # 定义模型保存路径
for epoch in range(1, NUM_EPOCHS+1): # 3个epoch
train(model, DEVICE, train_loader, optimizer, epoch)
acc = test(model, DEVICE, test_loader)
if best_acc < acc:
best_acc = acc
torch.save(model.state_dict(), PATH) # 保存最优模型
print("acc is: {:.4f}, best acc is {:.4f}n".format(acc, best_acc))
版权声明:本文为m0_37227646原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。