证明幂函数x^n的导数

  • Post author:
  • Post category:其他





f

(

x

)

=

lim

x

1

x

=

0

f'(x)=\lim\limits_{△x\rightarrow\infty}\frac{1}{x}=0







f






















(


x


)




=




















x















lim































x
















1























=








0




证明:求函数



f

(

x

)

=

x

n

(

x

N

+

)

f'(x)=x^n(x∈N_+)的导数







f






















(


x


)




=









x










n









(


x














N










+


















)
















方法一:




f

(

x

)

=

lim

x

0

f

(

x

+

x

)

f

(

x

)

x

=

lim

x

0

(

x

+

x

)

n

x

n

x

=

lim

x

0

C

n

n

x

n

x

0

+

C

n

n

1

x

n

1

x

1

+

.

.

.

+

C

n

0

x

n

0

x

n

x

n

x

=

lim

x

0

C

n

n

1

x

n

1

x

1

+

.

.

.

+

C

n

0

x

n

0

x

n

x

=

lim

x

0

C

n

n

1

x

n

1

+

.

.

.

+

C

n

0

x

n

0

x

n

1

f'(x)=\lim\limits_{△x\to0}\frac{f(x+△x)-f(x)}{△x}=\lim\limits_{△x\to0}\frac{(x+△x)^n-x^n}{△x}=\lim\limits_{△x\to0}\frac{C^n_nx^n△x^0+C^{n-1}_nx^{n-1}△x^1+…+C^0_nx^0_n△x^n-x^n}{△x}=\lim\limits_{△x\to0}\frac{C^{n-1}_nx^{n-1}△x^1+…+C^0_nx^0_n△x^n}{△x}=\lim\limits_{△x\to0}{C^{n-1}_nx^{n-1}+…+C^0_nx^0_n△x^{n-1}}







f






















(


x


)




=




















x





0









lim


































x
















f


(


x


+





x


)





f


(


x


)























=




















x





0









lim


































x
















(


x


+





x



)










n













x










n






























=




















x





0









lim


































x

















C










n








n



















x










n













x










0









+



C










n









n





1




















x











n





1














x










1









+


.


.


.


+



C










n








0



















x










n








0






















x










n













x










n






























=




















x





0









lim


































x

















C










n









n





1




















x











n





1














x










1









+


.


.


.


+



C










n








0



















x










n








0






















x










n






























=




















x





0









lim





















C










n









n





1




















x











n





1












+




.


.


.




+





C










n








0



















x










n








0






















x











n





1



















x

0

{△x\to0}










x









0










x

0

有△x的项都为0












x














0






即:



f

(

x

)

=

lim

x

0

C

n

n

1

x

n

1

=

n

x

n

1

f'(x)=\lim\limits_{△x\to0}{C^{n-1}_nx^{n-1}}=n*x^{n-1}







f






















(


x


)




=




















x





0









lim





















C










n









n





1




















x











n





1













=








n














x











n





1















方法二:使用等价无穷





lim

a

0

(

1

+

a

)

n

1

=

n

a

\lim\limits_{a\to0}{(1+a)^n-1}=n*a















a





0









lim




















(


1




+




a



)










n
















1





=








n













a










f

(

x

)

=

lim

x

0

f

(

x

+

x

)

f

(

x

)

x

=

lim

x

0

(

x

+

x

)

n

x

n

x

=

lim

x

0

(

x

+

x

x

)

n

(

x

x

)

n

(

x

x

n

)

=

x

n

1

lim

x

0

(

1

+

x

x

)

n

1

x

x

=

x

n

1

n

f'(x)=\lim\limits_{△x\to0}\frac{f(x+△x)-f(x)}{△x}=\lim\limits_{△x\to0}\frac{(x+△x)^n-x^n}{△x}=\lim\limits_{△x\to0}\frac{(\frac{x+△x}{x})^n-(\frac{x}{x})^n}{(\frac{△x}{x^n})}=x^{n-1}*\lim\limits_{△x\to0}\frac{(1+\frac{△x}{x})^n-1}{\frac{△x}{x}}=x^{n-1}*n







f






















(


x


)




=




















x





0









lim


































x
















f


(


x


+





x


)





f


(


x


)























=




















x





0









lim


































x
















(


x


+





x



)










n













x










n






























=




















x





0









lim































(















x









n

























x





















)
















(














x
















x


+





x






















)










n












(














x
















x






















)










n






























=









x











n





1

































x





0









lim











































x



















x



































(


1


+














x



















x






















)










n












1























=









x











n





1





















n






版权声明:本文为qq_43625764原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。