x = tf.Variable(1.0)
y = x.assign_add(1)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print sess.run(x)
print sess.run(y)
print sess.run(x)
输出 1,2,2注意其x会变的
import tensorflow as tf
global_step = tf.Variable(0, trainable=False)
initial_learning_rate = 0.1 #初始学习率
learning_rate = tf.train.exponential_decay(initial_learning_rate,
global_step=global_step,
decay_steps=10,decay_rate=0.9)
opt = tf.train.GradientDescentOptimizer(learning_rate)
add_global = global_step.assign_add(1)
with tf.Session() as sess:
tf.global_variables_initializer().run()
print(sess.run(learning_rate))
for i in range(1):
_, rate = sess.run([add_global, learning_rate])
print(rate)
参考:
http://blog.csdn.net/u012436149/article/details/62058318
版权声明:本文为taoyanqi8932原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。