动态数组,但是不是线程安全的。
1.类的定义
public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
AbstractList也实现了List接口,这样做是为了使用一些重复代码,自己又实现了List是为了实现自己特有的方法。
2.成员变量
private static final long serialVersionUID = 8683452581122892189L;
private static final int DEFAULT_CAPACITY = 10;//默认容量大小
private static final Object[] EMPTY_ELEMENTDATA = {};//空实例提供的空数组
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
transient Object[] elementData; // non-private to simplify nested class access//为了节省序列化大小,重写序列化writeObject
private int size;
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
size表明ArrayList的最大Integer_MAXVALUE – 8,因为有头部信息。
3.构造函数
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
if ((size = elementData.length) != 0) {
// defend against c.toArray (incorrectly) not returning Object[]
// (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// replace with empty array.
this.elementData = EMPTY_ELEMENTDATA;
}
}
4.成员方法
add方法
public boolean add(E e) {//尾部插入数据
modCount++;//fast-fail机制
add(e, elementData, size);
return true;
}
public void add(int index, E element) {//指定位置插入数据
rangeCheckForAdd(index);
modCount++;
final int s;
Object[] elementData;
if ((s = size) == (elementData = this.elementData).length)
elementData = grow();
System.arraycopy(elementData, index,
elementData, index + 1,
s - index);//把后边数据后移一位
elementData[index] = element;
size = s + 1;
}
private void add(E e, Object[] elementData, int s) {
if (s == elementData.length)//扩容的实际
elementData = grow();//数组增长长度
elementData[s] = e;
size = s + 1;
}
private Object[] grow(int minCapacity) {
return elementData = Arrays.copyOf(elementData,
newCapacity(minCapacity));
}
private Object[] grow() {
return grow(size + 1);
}
//扩容之后数组的大小的确定
private int newCapacity(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);//1.5倍容量的增长
if (newCapacity - minCapacity <= 0) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
return Math.max(DEFAULT_CAPACITY, minCapacity);
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return minCapacity;
}
return (newCapacity - MAX_ARRAY_SIZE <= 0)
? newCapacity
: hugeCapacity(minCapacity);
}
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE)
? Integer.MAX_VALUE
: MAX_ARRAY_SIZE;
}
扩容方法 Arrays.copyOf(T[] original, int newLength) System.arraycopy(Object src, int srcPos, Object dest, int destPos, int length)
remove方法
public E remove(int index) {
Objects.checkIndex(index, size);
final Object[] es = elementData;
@SuppressWarnings("unchecked") E oldValue = (E) es[index];
fastRemove(es, index);
return oldValue;
}
private void fastRemove(Object[] es, int i) {
modCount++;
final int newSize;
if ((newSize = size - 1) > i)
System.arraycopy(es, i + 1, es, i, newSize - i);
es[size = newSize] = null;//前移一位,把最后一位设置为null并且重置size大小
}
序列化方法
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
int expectedModCount = modCount;
s.defaultWriteObject();//默认信息序列化
s.writeInt(size);//长度写入
for (int i=0; i<size; i++) {//把真正数据写入
s.writeObject(elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in size, and any hidden stuff
s.defaultReadObject();
// Read in capacity
s.readInt(); // ignored
if (size > 0) {
// like clone(), allocate array based upon size not capacity
SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
Object[] elements = new Object[size];
// Read in all elements in the proper order.
for (int i = 0; i < size; i++) {
elements[i] = s.readObject();
}
elementData = elements;
} else if (size == 0) {
elementData = EMPTY_ELEMENTDATA;
} else {
throw new java.io.InvalidObjectException("Invalid size: " + size);
}
}
5.内部类
迭代器
private class Itr implements Iterator<E> {
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount;
// prevent creating a synthetic constructor
Itr() {}
public boolean hasNext() {
return cursor != size;
}
@SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
@Override
public void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
final int size = ArrayList.this.size;
int i = cursor;
if (i < size) {
final Object[] es = elementData;
if (i >= es.length)
throw new ConcurrentModificationException();
for (; i < size && modCount == expectedModCount; i++)
action.accept(elementAt(es, i));
// update once at end to reduce heap write traffic
cursor = i;
lastRet = i - 1;
checkForComodification();
}
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
private class ListItr extends Itr implements ListIterator<E>
由 iterator 或 listIterator 方法生成的 iterators遵从 fail-fast 规则:如果在创建了 iterator 之后, list 被以任何方法(除了 iterator 自身的 remove, add 方法)进行结构性修改, iterator 会抛出 ConcurrentModificationException ,因此,当存在并行修改时, iterator 会快速失败,而不是在未来位置的时间做出冒险的位置操作。
需要注意 fail-fast行为 不能保证正如设计的那样,通常来说,发生非同步并发修改时,很难做出强有力的保证 fail-fast, Fail-fast iterators 抛出 ConcurrentModificationException 是基于尽力而为的基础。因此,编程时基于这个 exception 来保证准确性是错误的做法, fail-fast 应该仅仅用来检测 bugs。
因为不是线程安全的可以使用Collections.synchronizedList()