题目大意:给定n,为有n中兑换卷,现在每开一次箱子,就能等概率的获得其中的一种兑换卷。问说平均情况下需要开多少个箱子才能集齐n种兑换卷。
解题思路:dp[i]表示还有i种没获得,
d
p
[
i
]
=
n
−
i
n
∗
d
p
[
i
]
+
i
n
∗
d
p
[
i
−
1
]
+
1
===》
d
p
[
i
]
=
d
p
[
i
−
1
]
+
n
i
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long type;
struct Fraction {
type member; // 分子;
type denominator; // 分母;
Fraction (type member = 0, type denominator = 1);
void operator = (type x) { this->set(x, 1); }
Fraction operator * (const Fraction& u);
Fraction operator / (const Fraction& u);
Fraction operator + (const Fraction& u);
Fraction operator - (const Fraction& u);
void set(type member, type denominator);
};
inline type gcd (type a, type b) {
return b == 0 ? a : gcd(b, a % b);
}
/*Code*/
/
const int maxn = 33;
typedef long long ll;
Fraction dp[maxn+5][maxn+5];
void init () {
for (int i = 1; i <= maxn; i++) {
dp[i][0] = 0;
for (int j = 1; j <= i; j++)
//dp[i][j] = (dp[i][j-1] * Fraction(j, i) + Fraction(1, 1)) / Fraction(j, i);
dp[i][j] = dp[i][j-1] + Fraction(i, j);
}
}
inline int countbit (ll u) {
int ret = 0;
while (u) {
ret++;
u /= 10;
}
return ret;
}
void put_ans (Fraction u) {
type d = u.member / u.denominator;
type member = u.member % u.denominator;
int cn = countbit(d);
int cd = countbit(u.denominator);
int n = cn + (cn == 0 ? 0 : 1);
if (member) {
for (int i = 0; i < n; i++) printf(" ");
printf("%lld\n", member);
}
printf("%lld", d);
if (member) {
if (d)
printf(" ");
for (int i = 0; i < cd; i++) printf("-");
printf("\n");
for (int i = 0; i < n; i++) printf(" ");
printf("%lld", u.denominator);
}
printf("\n");
}
int main () {
int n;
init();
while (scanf("%d", &n) == 1) {
put_ans(dp[n][n]);
}
return 0;
}
/
Fraction::Fraction (type member, type denominator) {
this->set(member, denominator);
}
Fraction Fraction::operator * (const Fraction& u) {
return Fraction(member * u.member, denominator * u.denominator);
}
Fraction Fraction::operator / (const Fraction& u) {
return Fraction(member * u.denominator, denominator * u.member);
}
Fraction Fraction::operator + (const Fraction& u) {
return Fraction(member * u.denominator + denominator * u.member, denominator * u.denominator);
}
Fraction Fraction::operator - (const Fraction& u) {
return Fraction(member * u.denominator - denominator * u.member, denominator * u.denominator);
}
void Fraction::set (type member, type denominator) {
type tmp_d = gcd(member, denominator);
this->member = member / tmp_d;
this->denominator = denominator / tmp_d;
}