题目大意:给定n,为有n中兑换卷,现在每开一次箱子,就能等概率的获得其中的一种兑换卷。问说平均情况下需要开多少个箱子才能集齐n种兑换卷。
    
   
    
     解题思路:dp[i]表示还有i种没获得,
     
      
      
      
       
        
         
          
           
            
             d
             
            
            
             p
            
            
             [
            
            
             i
            
            
             ]
            
            
             =
            
            
             
              
               
                
                 
                  
                   n
                  
                  
                   −
                  
                  
                   i
                  
                 
                 
                 
                
                
                 
                  n
                 
                 
                 
                
                
                 
                 
                 
                
               
              
             
            
            
             ∗
            
            
             d
             
            
            
             p
            
            
             [
            
            
             i
            
            
             ]
            
            
             +
            
            
             
              
               
                
                 
                  i
                 
                 
                 
                
                
                 
                  n
                 
                 
                 
                
                
                 
                 
                 
                
               
              
             
            
            
             ∗
            
            
             d
             
            
            
             p
            
            
             [
            
            
             i
            
            
             −
            
            
             1
            
            
             ]
            
            
             +
            
            
             1
            
           
           
           
          
         
         
        
       
      
     
     
     ===》
     
      
      
      
       
        
         
          
           
            
             d
             
            
            
             p
            
            
             [
            
            
             i
            
            
             ]
            
            
             =
            
            
             d
             
            
            
             p
            
            
             [
            
            
             i
            
            
             −
            
            
             1
            
            
             ]
            
            
             +
            
            
             
              
               
                
                 
                  n
                 
                 
                 
                
                
                 
                  i
                 
                 
                 
                
                
                 
                 
                 
                
               
              
             
            
           
           
           
          
         
         
        
       
      
     
    
   
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long type;
struct Fraction {
    type member; // 分子;
    type denominator; // 分母;
    Fraction (type member = 0, type denominator = 1);
    void operator = (type x) { this->set(x, 1); }
    Fraction operator * (const Fraction& u);
    Fraction operator / (const Fraction& u);
    Fraction operator + (const Fraction& u);
    Fraction operator - (const Fraction& u);
    void set(type member, type denominator);
};
inline type gcd (type a, type b) {
    return b == 0 ? a : gcd(b, a % b);
}
/*Code*/
/
const int maxn = 33;
typedef long long ll;
Fraction dp[maxn+5][maxn+5];
void init () {
    for (int i = 1; i <= maxn; i++) {
        dp[i][0] = 0;
        for (int j = 1; j <= i; j++)
            //dp[i][j] = (dp[i][j-1] * Fraction(j, i) + Fraction(1, 1)) / Fraction(j, i);
            dp[i][j] = dp[i][j-1] + Fraction(i, j);
    }
}
inline int countbit (ll u) {
    int ret = 0;
    while (u) {
        ret++;
        u /= 10;
    }
    return ret;
}
void put_ans (Fraction u) {
    type d = u.member / u.denominator;
    type member = u.member % u.denominator;
    int cn = countbit(d);
    int cd = countbit(u.denominator);
    int n = cn + (cn == 0 ? 0 : 1);
    if (member) {
        for (int i = 0; i < n; i++) printf(" ");
        printf("%lld\n", member);
    }
    printf("%lld", d);
    if (member) {
        if (d)
            printf(" ");
        for (int i = 0; i < cd; i++) printf("-");
        printf("\n");
        for (int i = 0; i < n; i++) printf(" ");
        printf("%lld", u.denominator);
    }
    printf("\n");
}
int main () {
    int n;
    init();
    while (scanf("%d", &n) == 1) {
        put_ans(dp[n][n]);
    }
    return 0;
}
/
Fraction::Fraction (type member, type denominator) {
    this->set(member, denominator);
}
Fraction Fraction::operator * (const Fraction& u) {
    return Fraction(member * u.member, denominator * u.denominator);
}
Fraction Fraction::operator / (const Fraction& u) {
    return Fraction(member * u.denominator, denominator * u.member);
}
Fraction Fraction::operator + (const Fraction& u) {
    return Fraction(member * u.denominator + denominator * u.member, denominator * u.denominator);
}
Fraction Fraction::operator - (const Fraction& u) {
    return Fraction(member * u.denominator - denominator * u.member, denominator * u.denominator);
}
void Fraction::set (type member, type denominator) {
    type tmp_d = gcd(member, denominator);
    this->member = member / tmp_d;
    this->denominator = denominator / tmp_d;
} 
