张量操作
一、拼接与切分
1.1 torch.cat()
功能:将张量按维度dim进行拼接
tensors:张量序列
dim:要拼接的维度
函数:torch.cat(tensors,dim=0,out=None)
t = torch.ones([2,3])
t_0 = torch.cat([t,t],dim=0)
t_1 = torch.cat([t,t],dim=1)
print("t_0:{} shape:{}\nt_1:{} shape:{}".format(t_0,t_0.shape,t_1,t_1.shape))
输出:shape:torch.Size([4, 3])
shape:torch.Size([2, 6])
1.2 torch.stack()
功能:在新创建的维度dim上进行拼接
tensors:张量序列
dim:要拼接的维度
函数:torch.stack(tensors,dim=0,out=None)
t_stack = torch.stack([t,t,t,t,t],dim=1)
print("\nt_stack:{} shape:{}".format(t_stack,t_stack.shape))
输出:torch.Size([2, 5, 3])
1.3 torch.chunk()
功能:将张量按维度dim进行平均切分
返回值:张量列表
注意事项:若不能整除,最后一份张量小于其他张量
input:要切分的张量
chunks:要切分额份数
函数:torch.chunk(input,chunks,dim=0)
【注】chunk向上取整
a = torch.ones((2,5))
list_of_tensor = torch.chunk(a,dim=1,chunks=2)
for idx,t in enumerate(list_of_tensor):
print("第{}个张量:{},shape is {}".format(idx+1,t,t.shape))
输出:shape:torch.Size([2, 3])
shape:torch.Size([2, 2])
1.4 torch.split()
功能:将张量按维度dim进行平均切分
返回值:张量列表
tensor:要切分的张量
split_size_or_sections:为int时,表示每一份的长度;
为list时, 按list元素切分
函数:torch.split(tensor,split size_ or_ sections,dim=0)
t = torch.ones((2,5))
list_of_tensors = torch.split(t,[1,1,1,2],dim=1)
for idx,t in enumerate(list_of_tensors):
print("第{}个张量:{},shape is {}".format(idx+1,t,t.shape))
输出:shape:torch.Size([2, 1])
shape:torch.Size([2, 1])
shape:torch.Size([2, 1])
shape:torch.Size([2, 2])
二、索引
2.1 torch.index_select()
功能:在维度dim上,按index索引数据
返回值:依index索引数据拼接的张量
input:要索引的张量
index:索引的序号
函数:torch.index_select(input,dim,index,out=None)
t = torch.randint(0,9,size=(3,3))
#索引的必须是long
idx = torch.tensor([0,2],dtype=torch.long)
t_select = torch.index_select(t,dim=0,index=idx)
print("t:\n{}\nt_select:n{}".format(t,t_select))
输出:t:
tensor([[4, 5, 2],
[4, 3, 6],
[4, 4, 2]])
t_select:
tensor([[4, 5, 2],
[4, 4, 2]])
2.2 torch.masked_select()
功能:按mask中的True进行索引
返回值:一维张量
input:要索引的张量
mask:与input同形状的布尔类型张量
函数:torch.masked_select(inout,mask,out=None)
t = torch.randint(0,9,size=(3,3))
mask = t.ge(5) #>=5 的数
t_select = torch.masked_select(t,mask)
print("t:\n{}\nmask:\n{}\nt_select:n{}".format(t,mask,t_select))
t:
tensor([[3, 8, 0],
[4, 7, 0],
[5, 8, 0]])
mask:
tensor([[False, True, False],
[False, True, False],
[ True, True, False]])
t_select:ntensor([8, 7, 5, 8])
三、变换
3.1 torch.reshape()
功能:变换张量形状
shape:新张量的形状
【注】:张量与input共享数据内存
函数:torch.reshape(input,shape)
t = torch.randperm(8)
t_reshape = torch.reshape(t,(-1,4)) #(-1,4)
print("t:{}\nt_reshape:\n{}".format(t,t_reshape))
输出:t:tensor([7, 3, 0, 2, 4, 5, 1, 6])
t_reshape:
tensor([[7, 3, 0, 2],
[4, 5, 1, 6]])
3.2 torch.transpose()
功能:变换张量的两个维度
dim0:要交换的维度
dim1:要交换的维度
函数:torch.transpose(input,dim0,dim1)
t = torch.rand(2,3,4)
t_transpose = torch.transpose(t,dim0=1,dim1=2)
print("t:{}\nt_transpose:\n{}".format(t.shape,t_transpose.shape))
输出:t:torch.Size([2, 3, 4])
t_transpose:
torch.Size([2, 4, 3])
3.3 torch.t()
功能:二维张量转置
等价于torch.transpose(input,0,1)
函数:torch.t(input)
t = torch.rand(2,3)
t_T = torch.t(t)
print("t_T:\n",t_T)
输出:t:torch.Size([3, 2])
3.4 torch.squeeze()
功能:压缩长度为1的维度
dim:若为None,移除所有长度为1的轴;
指定维度,当且仅当该轴长度为1时,可以被移除
函数:torch.squeeze(input,dim=None,out=None)
t = torch.randint(0,9,size=(1,2,3,1))
t_sq = torch.squeeze(t)
t_0 = torch.squeeze(t,dim=0)
t_1 = torch.squeeze(t,dim=1)
print(t.shape)
print(t_sq.shape)
print(t_0.shape)
print(t_1.shape)
输出:torch.Size([1, 2, 3, 1])
torch.Size([2, 3])
torch.Size([2, 3, 1])
torch.Size([1, 2, 3, 1])
3.5 torch.unsqueeze()
功能:依据dim扩展维度
函数:torch.unsqueeze(input,dim=None,out=None)
t = torch.randint(0,9,size=(2,2))
t_2 = torch.unsqueeze(t,dim=2)
print(t_2.shape)
输出:torch.Size([2, 2, 1])
四、数学运算
1.1 加减乘除,对数指数,三角函数
4.1 torch.add()
功能:计算input+ alphax other
input:第一个张量
alpha:乘项因子
other:第二个张量
函数:torch.addcmul( input ,value=1,tensor1,tensor2, out=None )