import cv2
# 图片中的人脸检测
pathf = r'haarcascade_frontalface_default.xml'
pathe = r'haarcascade_eye.xml'
# 获取训练好的人脸的参数数据,这里直接从GitHub上使用默认值
face_cascade = cv2.CascadeClassifier(pathf)
eye_cascade = cv2.CascadeClassifier(pathe)
# 检测摄像头中的人脸
if __name__ == "__main__":
cap = cv2.VideoCapture(0)
video_w, video_h = int(cap.get(3)), int(cap.get(4))
print(video_h, video_w)
while True:
# 获取当前帧并初始化occupied/unoccupied文本
(grabbed, frame) = cap.read()
gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
# 探测图片中的人脸
faces = face_cascade.detectMultiScale(
gray,
scaleFactor=1.15,
minNeighbors=5,
minSize = (5, 5),
)
print("发现{0}个人脸!".format(len(faces)))
for (x,y,w,h) in faces:
#圆圈
cv2.circle(frame,((x+x+w)//2,(y+y+h)//2),w//2,(0,255,0),2)
#矩形
# cv2.rectangle(frame,(x,y),(x+w,y+w),(0,255,0),2)
face_re = frame[y:y+h, x:x+h]
face_re_g = gray[y:y+h, x:x+h]
eyes = eye_cascade.detectMultiScale(face_re_g)
for(ex,ey,ew,eh) in eyes:
cv2.rectangle(face_re,(ex,ey),(ex+ew,ey+eh),(255,0,0),1)
cv2.imshow("摄像头", frame)
k = cv2.waitKey(1) & 0xff
if k == ord('q') or k == 27:
break
cap.release()
复制代码
效果如下(请忽略我英俊的脸庞?):如对你有帮助点个赞呗