LLVIP Dataset(RGB-T Pedestrian Detection)
Jia X, Zhu C, Li M, et al. LLVIP: A visible-infrared paired dataset for low-light vision[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.
2021
: 3496-3504.
适用方向:热红外和可见光行人检测
LLVIP数据集是在时间和空间上严格对齐的数据对。用于暗光条件下的红外和可见光的行人检测算法。
M3FD Dataset(RGB-T Object Detection)
Jinyuan Liu, Xin Fan*, Zhangbo Huang, Guanyao Wu, Risheng Liu , Wei Zhong, Zhongxuan Luo,
“Target-aware Dual Adversarial Learning and a Multi-scenario Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection”
, IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR)
, 2022.
(Oral)
适用方向:热红外和可见光图像目标检测
DUT-VTUAV Dataset(Visble-thermal UAV Tracking)
Zhang P, Zhao J, Wang D, et al. Visible-thermal UAV tracking: A large-scale benchmark and new baseline[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 8886-8895.
适用方向:Visble-thermal UAV Tracking
一个新的数据集,用于无人机的
单目标跟踪
。基于热红外和可见光图像。
KAIST Dataset(RGB-T Pedestrian Detection)
S. Hwang, J. Park, N. Kim, Y. Choi and I. S. Kweon, “Multispectral pedestrian detection: Benchmark dataset and baseline,” 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 1037-1045, doi: 10.1109/CVPR.2015.7298706.
适用方向:热红外和可见光的联合行人检测
FLIR Dataset(RGB-T object detection)
适用方向:热红外和可见光的联合目标检测
10k张可将光-红外图像对,
但是没有对准
,进行融合前需校正。
RoadScene Dataset(aligned infrared and visible images)
适用方向:红外和可见光图像融合
数据来源:从FLIR数据集中选取出,经过精细配准得到。
该数据集
为对齐的图片,没有语义标签
。
Freiburg Thermal Dataset(仅有数据,没有标注)
J. Vertens, J. Zürn and W. Burgard, “HeatNet: Bridging the Day-Night Domain Gap in Semantic Segmentation with Thermal Images,”
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, Las Vegas, NV, USA, 2020, pp. 8461-8468, doi: 10.1109/IROS45743.2020.9341192.
LSOTB-TIR(Thermal Infrared Object Tracking)
LSOTB-TIR: A Large-Scale High-Diversity Thermal Infrared Object Tracking Benchmark
适用方向:Thermal Infrared Object Tracking