理论基础
在进行系统时间获取并用于程序性能分析时,我们需要考虑精确而有效的时间获取方法。
在《深入理解计算机系统》这本书中谈到,目前进行时间测量的系统接口和方法有两种:
通过间隔计数的方法:
OS维护着每个进程使用的用户时间量和系统时间量的计数值,当计时器中断发生时,OS会确定哪个进程是活动的,并且对那个进程的一个计数值增加计时器间隔时间。这时会根据进程的状态,如果是内核态就增加系统时间,否则增加用户时间。
这种计时方式并不管在这个时间段(两个计时器中断之间)内到底用了多少时间,所以不够准确。但是从长时间考虑,这个平均值还是可以接受的。
利用周期计数器的方法:
很多CPU包含了一个运行在时钟周期级的计时器。这个计时器其实是个特殊的寄存器,每个时钟周期会加1。这个工具可以用来测量一个程序执行中两个不同点之间经过的时间。就是基于系统时间点的测量,而在这两点之间的情况并不关心。这样导致了多任务系统上,这种计时器只能用于对比而无法直接表示进程时间消耗。所以其受上下文切换、高速缓存的影响。
通过上面的比较和介绍,我们可以看到,两种方法各有优劣、是从不同的方向来进行时间测量的。
所以,这本书在章节后面给出了一个协议:
如果程序X预期的运行时间很长(运行时间远远大于间隔计数的时间段),可以使用间隔计数的方式。
如果X预期运行时间大概在0.01~1.0s之间,那么在负载很轻的系统上,就需要使用周期计时的方式。在这里强调负载轻,主要原因是害怕上下文切换等因素的影响。
如果X预期运行时间小于0.01s,那么就使用周期计时的方式。这时候,由于时间很短,不用担心负载问题,上下文切换等因素起到的影响就很小了。
下面分析我们通常使用的:
———————————–
clock_gettime:
.save {r4, r7}
stmfd sp!, {r4, r7}
ldr r7, =__NR_clock_gettime
swi #0
ldmfd sp!, {r4, r7}
movs r0, r0
bxpl lr
b __set_syscall_errno
.fnend
———————————–
gettimeofday:
.save {r4, r7}
stmfd sp!, {r4, r7}
ldr r7, =__NR_gettimeofday
swi #0
ldmfd sp!, {r4, r7}
movs r0, r0
bxpl lr
b __set_syscall_errno
.fnend
———————————–
这两个函数都是直接进行了系统调用。
关于时间源这类的时间调用是复杂的,我也没有做这方面工作的经验,不敢乱言。
使用说明请参考:
http://www.360doc.com/content/11/0715/09/1317564_133662142.shtml
gettimeofday()提供了微秒级的精确度
1、头文件 <time.h>
2、函数原型
int gettimeofday(struct timeval *tv, struct timezone *tz);
gettimeofday()会把目前的时间由tv所指的结构返回,当地时区的信息则放到tz所指的结构中(可用NULL)。
参数说明:
timeval结构定义为:
struct timeval
{
long tv_sec; /*秒*/
long tv_usec; /*微秒*/
};
timezone 结构定义为:
struct timezone
{
int tz_minuteswest; /*和Greenwich 时间差了多少分钟*/
int tz_dsttime; /*日光节约时间的状态*/
};
上述两个结构都定义在/usr/include/sys/time.h。tz_dsttime 所代表的状态如下
DST_NONE /*不使用*/
DST_USA /*美国*/
DST_AUST /*澳洲*/
DST_WET /*西欧*/
DST_MET /*中欧*/
DST_EET /*东欧*/
DST_CAN /*加拿大*/
DST_GB /*大不列颠*/
DST_RUM /*罗马尼亚*/
DST_TUR /*土耳其*/
DST_AUSTALT /*澳洲(1986年以后)*/
返回值: 成功则返回0,失败返回-1,错误代码存于errno。附加说明EFAULT指针tv和tz所指的内存空间超出存取权限。
#include<stdio.h>
#include<time.h>
int main(void)
{
struct timeval tv;
struct timezone tz;
gettimeofday (&tv , &tz);
printf(“tv_sec; %d/n”, tv,.tv_sec) ;
printf(“tv_usec; %d/n”,tv.tv_usec);
printf(“tz_minuteswest; %d/n”, tz.tz_minuteswest);
printf(“tz_dsttime, %d/n”,tz.tz_dsttime);
return 0;
}
clock_gettime( ) 提供了纳秒级的精确度
1、头文件 <time.h>
2、编译&链接。在编译链接时需加上 -lrt ;因为在librt中实现了clock_gettime函数
3、函数原型
int clock_gettime(clockid_t clk_id, struct timespect *tp);
参数说明:
clockid_t clk_id 用于指定计时时钟的类型,有以下4种:
CLOCK_REALTIME:系统实时时间,随系统实时时间改变而改变,即从UTC1970-1-1 0:0:0开始计时,中间时刻如果系统时间被用户该成其他,则对应的时间相应改变
CLOCK_MONOTONIC:从系统启动这一刻起开始计时,不受系统时间被用户改变的影响
CLOCK_PROCESS_CPUTIME_ID:本进程到当前代码系统CPU花费的时间
CLOCK_THREAD_CPUTIME_ID:本线程到当前代码系统CPU花费的时间
struct timespect *tp用来存储当前的时间,其结构如下:
struct timespec
{
time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */
};
返回值。0成功,-1失败
#include<stdio.h>
#include<time.h>
int main()
{
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
printf(“CLOCK_REALTIME: %d, %d”, ts.tv_sec, ts.tv_nsec);
clock_gettime(CLOCK_MONOTONIC, &ts);//打印出来的时间跟 cat /proc/uptime 第一个参数一样
printf(“CLOCK_MONOTONIC: %d, %d”, ts.tv_sec, ts.tv_nsec);
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
printf(“CLOCK_PROCESS_CPUTIME_ID: %d, %d”, ts.tv_sec, ts.tv_nsec);
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts);
printf(“CLOCK_THREAD_CPUTIME_ID: %d, %d”, ts.tv_sec, ts.tv_nsec);
printf(“/n%d/n”, time(NULL));
return 0;
}
/proc/uptime里面的两个数字分别表示:
the uptime of the system (seconds), and the amount of time spent in idle process (seconds).
把第一个数读出来,那就是从系统启动至今的时间,单位是秒