直接或间接地调用自身的算法称为递归算法。用函数自身给出定义的函数称为递归函数。
递归需要有边界条件、递归前进段和递归返回段。 当边界条件不满足时,递归前进; 当边界条件满足时,递归返回。
    
    
    分治的基本思想
   
     
   
    
    
    汉诺塔
   
    
    
    众数与重数 非分治实现
   
    
     总时间限制: 1000ms 内存限制: 1000kB
    
    
    
     描述
    
    
    给定含有n个元素的多重集合S,每个元素在S中出现的次数称为该元素的重数。多重集S中重数最大的元素称为众数。例如,S={1,2,2,2,3,5}。多重集S的众数是2,其重数为3。对于给定的n个自然数组成的多重集S,计算S的众数及其重数 。
   
    
     输入
    
    
    输入集合大小n及n个数
    
    
     输出
    
    
    输出两行
    
    第一行为众数
    
    第二行为重数
    
    
     样例输入
    
    
    6
    
    1 2 2 2 3 5
    
    
     样例输出
    
    
    2
    
    3
   
#include<iostream>
using namespace std;
int main() 
{
	int i,j,n,same,max=-1;
	
	//输入
	int a[5000],b[5000];
	cin>>n;
	for(i=0;i<n;i++){
		cin>>a[i];
	}
	
		
	for(i=0;i<n;i++){
		b[i]=0;
	}
	//记录个数
	for(i=0;i<n;i++){
		for(j=0;j<n;j++){
			if(a[i]==a[j])
				b[i]  ;
		}	
	}
	
	for(i=0;i<n;i++)
	{
		if(b[i]>max){
			max=b[i];
			same=a[i];
		}
			
		if(b[i]==max)
		{
			if(a[i]<a[max]){
				max=b[i];
				same=a[i];
			}		
		} 
	}
	cout<<same<<" "<<max;
	
	return 0;
} 
 
版权声明:本文为Chuang98原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
