1.(来源1:1998清华大学自动控制原理第1题;来源2:自动控制原理学习辅导知识精粹习题详解考研真题——孙优贤、王慧 P30.例2-5、P57.B2-24)水平硬质杆上固定
M
1
M_1
M
1
、
M
2
M_2
M
2
、
M
3
M_3
M
3
放置在水平桌面上,两个弹簧分别为
K
1
K_1
K
1
、
K
2
K_2
K
2
,忽略所有摩擦,当转动硬质杆的一端,转过一个小角度,求十家的力
f
f
f
(输入)与
M
2
M_2
M
2
的位移
x
x
x
(输出)之间的传递函数。
杆的转动惯量
J
=
M
1
a
2
J=M_1a^2
J
=
M
1
a
2
设杆的转角为
θ
\theta
θ
,对
M
2
M_2
M
2
有
M
2
x
¨
=
k
2
(
a
θ
−
x
)
M_2\ddot{x}=k_2(a\theta-x)
M
2
x
¨
=
k
2
(
a
θ
−
x
)
对
M
1
M_1
M
1
有
M
1
a
2
θ
¨
=
(
a
+
b
+
c
)
f
−
k
1
(
a
+
b
)
2
θ
−
M
2
a
x
¨
M_1a^2\ddot{\theta}=(a+b+c)f-k_1(a+b)^2\theta-M_2a\ddot{x}
M
1
a
2
θ
¨
=
(
a
+
b
+
c
)
f
−
k
1
(
a
+
b
)
2
θ
−
M
2
a
x
¨
因为
a
=
b
=
c
a=b=c
a
=
b
=
c
M
1
a
θ
¨
=
3
f
−
4
k
1
a
θ
−
M
2
x
¨
M_1a\ddot{\theta}=3f-4k_1a\theta-M_2\ddot{x}
M
1
a
θ
¨
=
3
f
−
4
k
1
a
θ
−
M
2
x
¨
在零初始条件下对上式拉氏变换去除中间变量
θ
\theta
θ
可得到传递函数
X
(
s
)
F
(
s
)
=
k
2
M
1
M
2
s
4
+
(
k
2
M
1
+
k
2
M
2
+
4
k
1
M
2
)
s
2
+
4
k
1
k
2
\frac{X(s)}{F(s)}=\frac{k_2}{M_1M_2s^4+(k_2M_1+k_2M_2+4k_1M_2)s^2+4k_1k_2}
F
(
s
)
X
(
s
)
=
M
1
M
2
s
4
+
(
k
2
M
1
+
k
2
M
2
+
4
k
1
M
2
)
s
2
+
4
k
1
k
2
k
2
2.(来源:自动控制原理学习辅导知识精粹习题详解考研真题——孙优贤、王慧 P77.例3-13)已知某负反馈系统的结构图如下图所示,其中
G
(
s
)
=
1
s
3
+
3.5
s
2
+
3.5
s
+
1
G(s)=\cfrac{1}{s^3+3.5s^2+3.5s+1}
G
(
s
)
=
s
3
+
3
.
5
s
2
+
3
.
5
s
+
1
1
,反馈通道传递函数为
H
(
s
)
=
a
s
2
+
b
s
+
c
H(s)=as^2+bs+c
H
(
s
)
=
a
s
2
+
b
s
+
c
,要求闭环系统的性能指标
σ
p
=
4.3
%
\sigma_p=4.3\%
σ
p
=
4
.
3
%
,
t
s
=
.
s
(
Δ
=
5
%
)
t_s=.s(\Delta=5\%)
t
s
=
.
s
(
Δ
=
5
%
)
,确定参数
a
a
a
,
b
b
b
,
c
c
c
。
根据系统的动态性能指标,设闭环主导极点为
s
1
,
2
=
−
ζ
ω
n
±
j
1
−
ζ
2
s_{1,2}=-\zeta\omega_n\pm j\sqrt{1-\zeta^2}
s
1
,
2
=
−
ζ
ω
n
±
j
1
−
ζ
2
,另一个极点为
s
3
=
−
d
s_3=-d
s
3
=
−
d
,由题目要求
{
σ
p
=
e
−
π
ζ
1
−
ζ
2
×
100
%
=
4.3
%
T
s
=
3
ζ
ω
n
=
3
\left\{\begin{array}{l} \sigma_p=e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}\times100\%=4.3\% \\ T_s=\frac{3}{\zeta\omega_n}=3 \end{array}\right.
{
σ
p
=
e
−
1
−
ζ
2
π
ζ
×
1
0
0
%
=
4
.
3
%
T
s
=
ζ
ω
n
3
=
3
解得
{
ζ
=
0.707
ω
n
=
1.866
rad/s
\left\{\begin{array}{l} \zeta=0.707 \\ \omega_n=1.866\,\text{rad/s} \end{array}\right.
{
ζ
=
0
.
7
0
7
ω
n
=
1
.
8
6
6
rad/s
则有
s
2
+
2
ζ
ω
n
+
ω
n
2
=
s
2
+
2
s
+
s
=
0
s^2+2\zeta\omega_n+\omega_n^2=s^2+2s+s=0
s
2
+
2
ζ
ω
n
+
ω
n
2
=
s
2
+
2
s
+
s
=
0
系统的特征方程为
Δ
(
s
)
=
(
s
2
+
2
s
+
s
)
(
s
+
d
)
=
s
3
+
(
d
+
2
)
s
2
+
(
2
d
+
2
)
s
+
2
d
\begin{aligned} \Delta(s)&=(s^2+2s+s)(s+d)\\ &=s^3+(d+2)s^2+(2d+2)s+2d \end{aligned}
Δ
(
s
)
=
(
s
2
+
2
s
+
s
)
(
s
+
d
)
=
s
3
+
(
d
+
2
)
s
2
+
(
2
d
+
2
)
s
+
2
d
系统的闭环传递函数为
Φ
(
s
)
=
G
(
s
)
1
+
G
(
s
)
H
(
s
)
=
1
s
3
+
(
a
+
3.5
)
s
2
+
(
b
+
3.5
)
s
+
c
+
1
\begin{aligned} \Phi(s)&=\frac{G(s)}{1+G(s)H(s)} \\ &=\frac{1}{s^3+(a+3.5)s^2+(b+3.5)s+c+1} \end{aligned}
Φ
(
s
)
=
1
+
G
(
s
)
H
(
s
)
G
(
s
)
=
s
3
+
(
a
+
3
.
5
)
s
2
+
(
b
+
3
.
5
)
s
+
c
+
1
1
对两特征方程可得
{
a
+
3.5
=
d
+
2
b
+
3.5
=
2
d
+
2
c
+
1
=
2
d
\left\{\begin{array}{l} a+3.5=d+2 \\ b+3.5=2d+2 \\ c+1=2d \end{array}\right.
⎩
⎨
⎧
a
+
3
.
5
=
d
+
2
b
+
3
.
5
=
2
d
+
2
c
+
1
=
2
d
因为
s
3
=
−
d
s_3=-d
s
3
=
−
d
为非主导极点,所以有
d
⩾
5
ζ
ω
n
=
5
d\geqslant5\zeta\omega_n=5
d
⩾
5
ζ
ω
n
=
5
,若取
d
=
6
d=6
d
=
6
,可得
{
a
+
=
4.5
b
=
10.5
c
=
11
\left\{\begin{array}{l} a+=4.5 \\ b=10.5 \\ c=11 \end{array}\right.
⎩
⎨
⎧
a
+
=
4
.
5
b
=
1
0
.
5
c
=
1
1
反馈通道传递函数为
H
(
s
)
=
4.5
s
2
+
10.5
s
+
11
H(s)=4.5s^2+10.5s+11
H
(
s
)
=
4
.
5
s
2
+
1
0
.
5
s
+
1
1
3.某系统的结构图如图:
(1)要使闭环系统渐近稳定,确定
K
0
K_0
K
0
、
K
1
K_1
K
1
的取值范围,并在
K
0
—
K
1
K_0—K_1
K
0
—
K
1
平面表示。
(2)在输入信号
r
(
t
)
=
0.5
t
2
r(t)=0.5t^2
r
(
t
)
=
0
.
5
t
2
的作用下,系统的稳态误差为
0
0
0
,求此时的
G
c
(
s
)
G_c(s)
G
c
(
s
)
。
(1)系统的闭环传递函数为
C
(
s
)
R
(
s
)
=
[
1
+
2
s
+
G
c
(
s
)
]
⋅
K
0
s
(
s
+
1
)
1
+
K
0
s
(
s
+
1
)
⋅
(
K
1
s
+
1
+
2
s
)
=
K
0
[
s
G
c
(
s
)
+
s
+
2
]
s
3
+
(
1
+
K
0
K
1
)
s
2
+
K
0
s
+
2
K
0
\begin{aligned} \frac{C(s)}{R(s)} &= \left[1+\frac{2}{s}+G_c(s)\right]\cdot \frac{\cfrac{K_0}{s(s+1)}}{1+\cfrac{K_0}{s(s+1)}\cdot \left(K_1s+1+\cfrac{2}{s}\right)} \\ &= \frac{K_0[sG_c(s)+s+2]}{s^3+(1+K_0K_1)s^2+K_0s+2K_0} \end{aligned}
R
(
s
)
C
(
s
)
=
[
1
+
s
2
+
G
c
(
s
)
]
⋅
1
+
s
(
s
+
1
)
K
0
⋅
(
K
1
s
+
1
+
s
2
)
s
(
s
+
1
)
K
0
=
s
3
+
(
1
+
K
0
K
1
)
s
2
+
K
0
s
+
2
K
0
K
0
[
s
G
c
(
s
)
+
s
+
2
]
闭环特征方程为
Δ
(
s
)
=
s
3
+
(
1
+
K
0
K
1
)
s
2
+
K
0
s
+
2
K
0
\Delta(s)=s^3+(1+K_0K_1)s^2+K_0s+2K_0
Δ
(
s
)
=
s
3
+
(
1
+
K
0
K
1
)
s
2
+
K
0
s
+
2
K
0
劳斯表
s
3
1
K
0
s
2
1
+
K
0
K
1
2
K
0
s
1
K
0
(
1
+
K
0
K
1
−
2
)
1
+
K
0
K
1
s
0
2
K
0
\begin{matrix} s^3 & 1 & K_0 \\ s^2 & 1+K_0K_1 & 2K_0 \\ s^1 & \cfrac{K_0(1+K_0K_1-2)}{1+K_0K_1} & \\ s^0 & 2K_0 & & \\ \end{matrix}
s
3
s
2
s
1
s
0
1
1
+
K
0
K
1
1
+
K
0
K
1
K
0
(
1
+
K
0
K
1
−
2
)
2
K
0
K
0
2
K
0
要使闭环系统渐近稳定,劳斯表第一列大于零,则有
{
K
0
>
0
K
1
>
1
K
0
\left\{\begin{array}{l} K_0>0 \\ K_1>\cfrac{1}{K_0} \end{array}\right.
⎩
⎨
⎧
K
0
>
0
K
1
>
K
0
1
K
0
—
K
1
K_0—K_1
K
0
—
K
1
平面
(2)系统误差传递函数
Φ
e
(
s
)
=
1
−
G
c
(
s
)
⋅
K
0
s
(
s
+
1
)
1
+
K
0
K
1
s
+
1
1
+
(
1
+
2
s
)
⋅
K
0
s
(
s
+
1
)
1
+
K
0
K
1
s
+
1
=
s
3
+
(
1
+
K
0
K
1
)
s
2
−
K
0
s
G
c
(
s
)
s
3
+
(
1
+
K
0
K
1
)
s
2
+
K
0
s
+
2
K
0
\begin{aligned} \Phi_e(s) &= \frac{1-G_c(s)\cdot \cfrac{\cfrac{K_0}{s(s+1)}}{1+\cfrac{K_0K_1}{s+1}}}{1+\left(1+\cfrac{2}{s}\right)\cdot \cfrac{\cfrac{K_0}{s(s+1)}}{1+\cfrac{K_0K_1}{s+1}}} \\ &= \frac{s^3+(1+K_0K_1)s^2-K_0sG_c(s)}{s^3+(1+K_0K_1)s^2+K_0s+2K_0} \end{aligned}
Φ
e
(
s
)
=
1
+
(
1
+
s
2
)
⋅
1
+
s
+
1
K
0
K
1
s
(
s
+
1
)
K
0
1
−
G
c
(
s
)
⋅
1
+
s
+
1
K
0
K
1
s
(
s
+
1
)
K
0
=
s
3
+
(
1
+
K
0
K
1
)
s
2
+
K
0
s
+
2
K
0
s
3
+
(
1
+
K
0
K
1
)
s
2
−
K
0
s
G
c
(
s
)
在输入信号
r
(
t
)
=
1
2
t
2
r(t)=\cfrac{1}{2}\,t^2
r
(
t
)
=
2
1
t
2
作用下,系统的稳态误差为
0
0
0
,即
lim
s
→
0
s
⋅
R
(
s
)
Φ
e
(
s
)
=
lim
s
→
0
s
⋅
1
s
3
⋅
Φ
e
(
s
)
=
lim
s
→
0
1
s
2
[
s
3
+
(
1
+
K
0
K
1
)
s
2
−
K
0
s
G
c
(
s
)
]
=
0
\begin{aligned} \lim\limits_{s\rightarrow0}s\cdot R(s)\Phi_e(s) &= \lim\limits_{s\rightarrow0}s\cdot\cfrac{1}{s^3}\cdot\Phi_e(s) \\ &=\lim\limits_{s\rightarrow0} \frac{1}{s^2}[s^3+(1+K_0K_1)s^2-K_0sG_c(s)] \\ &= 0 \end{aligned}
s
→
0
lim
s
⋅
R
(
s
)
Φ
e
(
s
)
=
s
→
0
lim
s
⋅
s
3
1
⋅
Φ
e
(
s
)
=
s
→
0
lim
s
2
1
[
s
3
+
(
1
+
K
0
K
1
)
s
2
−
K
0
s
G
c
(
s
)
]
=
0
可得
G
c
(
s
)
=
(
1
K
0
+
K
1
)
s
G_c(s)=\left( \frac{1}{K_0}+K_1 \right)s
G
c
(
s
)
=
(
K
0
1
+
K
1
)
s
4.有一个三阶开环系统,没有闭环零点,在斜坡信号
r
(
t
)
=
t
r(t)=t
r
(
t
)
=
t
作用下的稳态误差为常数:
(1)由已知两个极点
s
=
−
2
s=-2
s
=
−
2
、
s
=
−
4
s=-4
s
=
−
4
,请确定其开环传递函数,并绘制根轨迹,求出汇合分离点,与虚轴交点等信息。
(2)若已知有一个极点是
−
5
-5
−
5
,请确定传递函数,并求出对应的稳态误差和超调量。
三阶系统,无闭环零点,且在斜坡信号下的稳态误差为常数,故系统为
I
\text{I}
I
型系统,设系统的开环传递函数为
G
(
s
)
=
K
s
(
s
+
a
)
(
s
+
b
)
G(s)=\frac{K}{s(s+a)(s+b)}
G
(
s
)
=
s
(
s
+
a
)
(
s
+
b
)
K
(1)已知两个极点为
s
=
−
2
s=-2
s
=
−
2
、
s
=
−
4
s=-4
s
=
−
4
,系统的传递函数为
G
(
s
)
=
K
s
(
s
+
2
)
(
s
+
4
)
G(s)=\frac{K}{s(s+2)(s+4)}
G
(
s
)
=
s
(
s
+
2
)
(
s
+
4
)
K
系统的根轨迹方程为
K
s
(
s
+
2
)
(
s
+
4
)
=
−
1
\frac{K}{s(s+2)(s+4)}=-1
s
(
s
+
2
)
(
s
+
4
)
K
=
−
1
①
n
=
3
n=3
n
=
3
,
m
=
0
m=0
m
=
0
,根轨迹有
3
3
3
条分支
②根轨迹的起点:
P
1
=
0
P_1=0
P
1
=
0
,
P
2
=
−
2
P_2=-2
P
2
=
−
2
,
P
3
=
−
4
P_3=-4
P
3
=
−
4
③实轴上的根轨迹:
(
−
∞
,
−
4
]
(-\infin,-4]
(
−
∞
,
−
4
]
,
[
−
2
,
0
)
[-2,0)
[
−
2
,
0
)
④根轨迹的渐近线:
φ
=
(
2
k
+
1
)
π
3
−
0
⟹
k
=
0
,
φ
=
60
°
;
k
=
1
,
φ
=
300
°
σ
=
−
2
−
4
3
=
−
2
\varphi=\frac{(2k+1)\pi}{3-0} \implies k=0,\varphi=60°;k=1,\varphi=300° \\ \sigma=\frac{-2-4}{3}=-2
φ
=
3
−
0
(
2
k
+
1
)
π
⟹
k
=
0
,
φ
=
6
0
°
;
k
=
1
,
φ
=
3
0
0
°
σ
=
3
−
2
−
4
=
−
2
⑤根轨迹的汇合点和分离点
W
(
s
)
=
s
3
+
6
s
2
+
s
=
0
⟹
d
W
(
s
)
ds
=
3
s
2
+
12
s
+
8
=
0
s
1
=
−
0.845
(
分
离
点
)
,
s
2
=
−
3.155
(
舍
去
)
W(s)=s^3+6s^2+s=0 \implies \frac{\text{d}W(s)}{\text{ds}}=3s^2+12s+8=0 \\ s_1=-0.845(分离点),\ s_2=-3.155(舍去)
W
(
s
)
=
s
3
+
6
s
2
+
s
=
0
⟹
ds
d
W
(
s
)
=
3
s
2
+
1
2
s
+
8
=
0
s
1
=
−
0
.
8
4
5
(
分
离
点
)
,
s
2
=
−
3
.
1
5
5
(
舍
去
)
⑥根轨迹与虚轴交点
Δ
(
s
)
=
s
3
+
6
s
2
+
8
s
+
K
\Delta(s)=s^3+6s^2+8s+K
Δ
(
s
)
=
s
3
+
6
s
2
+
8
s
+
K
令
s
=
j
ω
s=j\omega
s
=
j
ω
Δ
(
j
ω
)
=
(
K
−
6
ω
2
)
+
j
(
8
ω
−
ω
3
)
\Delta(j\omega)=(K-6\omega^2)+j(8\omega-\omega^3)
Δ
(
j
ω
)
=
(
K
−
6
ω
2
)
+
j
(
8
ω
−
ω
3
)
令实部和虚部为零,可得
{
K
=
48
ω
=
2.828
\left\{\begin{array}{l} K=48 \\ \omega=2.828 \end{array}\right.
{
K
=
4
8
ω
=
2
.
8
2
8
根轨迹与虚轴交点为
s
1
,
2
=
±
j
2.828
s_{1,2}=\pm j2.828
s
1
,
2
=
±
j
2
.
8
2
8
。
系统的根轨迹如图所示
(2)已知其中一个极点为
−
5
-5
−
5
,将其代入特征方程中
Δ
(
5
)
=
−
125
+
150
−
40
+
K
=
0
\Delta(5)=-125+150-40+K=0
Δ
(
5
)
=
−
1
2
5
+
1
5
0
−
4
0
+
K
=
0
解得
K
=
15
K=15
K
=
1
5
系统的传递函数为
G
(
s
)
=
15
s
(
s
+
2
)
(
s
+
4
)
=
1.875
s
(
0.5
s
+
1
)
(
025
s
+
1
)
\begin{aligned} G(s) &= \frac{15}{s(s+2)(s+4)} \\ &=\frac{1.875}{s(0.5s+1)(0 25s+1)} \end{aligned}
G
(
s
)
=
s
(
s
+
2
)
(
s
+
4
)
1
5
=
s
(
0
.
5
s
+
1
)
(
0
2
5
s
+
1
)
1
.
8
7
5
系统的稳态误差为
e
s
s
(
∞
)
=
1
K
v
=
1.875
e_{ss}(\infin)=\frac{1}{K_v}=1.875
e
s
s
(
∞
)
=
K
v
1
=
1
.
8
7
5
将
K
K
K
代入特征方程,可解得
s
1
=
−
5
,
s
2
,
3
=
−
0.5
±
j
1.658
s_1=-5,\ s_{2,3}=-0.5\pm j1.658
s
1
=
−
5
,
s
2
,
3
=
−
0
.
5
±
j
1
.
6
5
8
s
2
,
3
s_{2,3}
s
2
,
3
为系统的主导极点,系统的超调量为
σ
p
=
e
−
π
ζ
1
−
ζ
2
×
100
%
=
e
−
0.5
π
1.658
×
100
%
=
38.775
%
\begin{aligned} \sigma_p &= e^{-\cfrac{\pi\zeta}{\sqrt{1-\zeta^2}}}\times100\% \\ &= e^{-\cfrac{0.5\pi}{1.658}}\times100\% \\ &= 38.775\% \end{aligned}
σ
p
=
e
−
1
−
ζ
2
π
ζ
×
1
0
0
%
=
e
−
1
.
6
5
8
0
.
5
π
×
1
0
0
%
=
3
8
.
7
7
5
%
5.二阶线性最小相位单位负反馈系统的开环奈奎斯特图如下,根据图中信息确定闭环传递函数,并绘制开环渐近对数幅频特性图。
奈奎斯曲线初始角为
−
90
°
-90°
−
9
0
°
,该系统为
I
\text{I}
I
型系统,终止角为
−
180
°
-180°
−
1
8
0
°
,设系统开环传递函数为
G
(
s
)
=
K
s
(
T
s
+
1
)
G(s)=\frac{K}{s(Ts+1)}
G
(
s
)
=
s
(
T
s
+
1
)
K
系统的频率特性为
G
(
j
ω
)
=
−
K
T
1
+
T
2
ω
2
−
j
K
ω
+
T
2
ω
3
G(j\omega)=-\frac{KT}{1+T^2\omega^2}-j\frac{K}{\omega+T^2\omega^3}
G
(
j
ω
)
=
−
1
+
T
2
ω
2
K
T
−
j
ω
+
T
2
ω
3
K
由图可知,当
ω
=
0
+
\omega=0^+
ω
=
0
+
时,
−
K
T
=
−
2
-KT=-2
−
K
T
=
−
2
;当
ω
=
2
\omega=2
ω
=
2
时,
−
K
T
1
+
4
T
2
=
−
1
-\cfrac{KT}{1+4T^2}=-1
−
1
+
4
T
2
K
T
=
−
1
,联立两式可解得
{
K
=
4
T
=
0.5
\left\{\begin{array}{l} K=4 \\ T=0.5 \end{array}\right.
{
K
=
4
T
=
0
.
5
系统的闭环传递函数为
Φ
(
s
)
=
G
(
s
)
1
+
G
(
s
)
=
4
0.5
s
2
+
s
+
4
\begin{aligned} \Phi(s) &= \frac{G(s)}{1+G(s)} \\ &= \frac{4}{0.5s^2+s+4} \end{aligned}
Φ
(
s
)
=
1
+
G
(
s
)
G
(
s
)
=
0
.
5
s
2
+
s
+
4
4
根据系统的开环传递函数,开环渐近对数幅频特性曲线初始斜率为
−
20
dB/dec
-20\,\text{dB/dec}
−
2
0
dB/dec
,转折频率为
ω
=
2
rad/s
\omega=2\,\text{rad/s}
ω
=
2
rad/s
,由
L
(
1
)
=
20
lg
K
L(1)=20\lg K
L
(
1
)
=
2
0
l
g
K
可知,低频段的延长线过点
(
1
,
12
)
(1,12)
(
1
,
1
2
)
;由
20
lg
4
ω
c
⋅
0.5
ω
c
20\lg\cfrac{4}{\omega_c\cdot 0.5\omega_c}
2
0
l
g
ω
c
⋅
0
.
5
ω
c
4
,可知系统的截至频率
ω
c
=
2
2
rad/s
\omega_c=2\sqrt{2}\text{rad/s}
ω
c
=
2
2
rad/s
,图略。
6.某单位负反馈系统的开环传递函数为
G
(
s
)
=
2
s
(
s
+
1
)
(
0.0.2
s
+
1
)
G(s)=\cfrac{2}{s(s+1)(0.0.2s+1)}
G
(
s
)
=
s
(
s
+
1
)
(
0
.
0
.
2
s
+
1
)
2
,试设计串联校正装置,满足下列要求:
(1)要求斜坡输入信号下的稳态误差为
e
s
s
(
∞
)
=
0.01
e_{ss}(\infin)=0.01
e
s
s
(
∞
)
=
0
.
0
1
;
(2)
0.6
⩽
ω
c
⩽
1
rad/s
0.6 \leqslant \omega_c \leqslant 1 \text{rad/s}
0
.
6
⩽
ω
c
⩽
1
rad/s
;
(3)
γ
⩾
40
°
\gamma\geqslant40°
γ
⩾
4
0
°
;
确定校正装置
G
c
(
s
)
G_c(s)
G
c
(
s
)
。
I
\text{I}
I
系统,斜坡输入信号下稳态误差为
e
s
s
(
∞
)
=
1
K
v
=
0.5
e_{ss}(\infin)=\frac{1}{K_v}=0.5
e
s
s
(
∞
)
=
K
v
1
=
0
.
5
根据题目要求斜坡输入信号下的稳态误差为
e
s
s
(
∞
)
=
0.01
e_{ss}(\infin)=0.01
e
s
s
(
∞
)
=
0
.
0
1
,设校正装置增益为
K
c
=
50
K_c=50
K
c
=
5
0
,此时系统的开环传递函数为
G
1
(
s
)
=
100
s
(
s
+
1
)
(
0.02
s
+
1
)
G_1(s)=\frac{100}{s(s+1)(0.02s+1)}
G
1
(
s
)
=
s
(
s
+
1
)
(
0
.
0
2
s
+
1
)
1
0
0
截止频率
100
ω
c
1
ω
c
1
2
+
1
0.0004
ω
c
1
2
+
1
=
1
\frac{100}{\omega_{c1}\sqrt{\omega_{c1}^2+1}\sqrt{0.0004\omega_{c1}^2+1}}=1
ω
c
1
ω
c
1
2
+
1
0
.
0
0
0
4
ω
c
1
2
+
1
1
0
0
=
1
解得
ω
c
1
=
9.88
rad/s
\omega_{c1}=9.88\,\text{rad/s}
ω
c
1
=
9
.
8
8
rad/s
相角裕度
γ
1
=
180
°
−
90
°
−
arctan
ω
c
1
−
arctan
0.02
ω
c
1
=
−
5.4
°
\gamma_1=180°-90°-\arctan\omega_{c1}-\arctan0.02\omega_{c1}=-5.4°
γ
1
=
1
8
0
°
−
9
0
°
−
arctan
ω
c
1
−
arctan
0
.
0
2
ω
c
1
=
−
5
.
4
°
故可使用滞后校正,设控制器为
G
c
(
s
)
=
50
(
τ
s
+
1
)
β
τ
s
+
1
G_c(s)=\frac{50(\tau s+1)}{\beta\tau s+1}
G
c
(
s
)
=
β
τ
s
+
1
5
0
(
τ
s
+
1
)
在
∠
G
1
(
j
ω
)
\angle G_1(j\omega)
∠
G
1
(
j
ω
)
选取相角
∠
G
1
(
j
ω
)
=
−
180
°
+
γ
c
+
10
°
=
−
130
°
\angle G_1(j\omega)=-180°+\gamma_c+10°=-130°
∠
G
1
(
j
ω
)
=
−
1
8
0
°
+
γ
c
+
1
0
°
=
−
1
3
0
°
对应的角频率为
ω
c
=
0.812
rad/s
\omega_c=0.812\,\text{rad/s}
ω
c
=
0
.
8
1
2
rad/s
由
20
lg
∣
G
1
(
j
ω
c
)
∣
=
20
lg
β
20\lg|G_1(j\omega_c)|=20\lg\beta
2
0
l
g
∣
G
1
(
j
ω
c
)
∣
=
2
0
l
g
β
可得
β
=
95.59
\beta=95.59
β
=
9
5
.
5
9
取
1
τ
=
1
10
ω
c
\cfrac{1}{\tau}=\cfrac{1}{10}\,\omega_c
τ
1
=
1
0
1
ω
c
可得
τ
=
12.32
β
τ
=
1177.22
\tau=12.32\ \ \ \beta\tau=1177.22
τ
=
1
2
.
3
2
β
τ
=
1
1
7
7
.
2
2
故校正装置为
G
c
(
s
)
=
50
(
12.32
s
+
1
)
1177.22
s
+
1
G_c(s)=\frac{50(12.32s+1)}{1177.22s+1}
G
c
(
s
)
=
1
1
7
7
.
2
2
s
+
1
5
0
(
1
2
.
3
2
s
+
1
)
校正后系统的传递函数为
G
c
(
s
)
G
(
s
)
=
100
(
12.32
s
+
1
)
s
(
s
+
1
)
(
0.02
s
+
1
)
(
1177.22
s
+
1
)
G_c(s)G(s)=\frac{100(12.32s+1)}{s(s+1)(0.02s+1)(1177.22s+1)}
G
c
(
s
)
G
(
s
)
=
s
(
s
+
1
)
(
0
.
0
2
s
+
1
)
(
1
1
7
7
.
2
2
s
+
1
)
1
0
0
(
1
2
.
3
2
s
+
1
)
7.某非线性系统结构如图所示,非线性环节描述为
N
(
A
)
=
16
π
A
1
−
(
1
A
)
2
N(A)=\cfrac{16}{\pi A}\sqrt{1-(\cfrac{1}{A})^2}
N
(
A
)
=
π
A
1
6
1
−
(
A
1
)
2
,分析是否会产生自激振荡,若产生,求振荡角频率及振幅,若不产生,说明理由。
方框图化简
系统线性部分传递函数为
G
(
s
)
=
2
s
(
s
2
+
2
s
+
2
)
G(s)=\frac{2}{s(s^2+2s+2)}
G
(
s
)
=
s
(
s
2
+
2
s
+
2
)
2
线性部分频率特性
G
(
j
ω
)
=
2
j
ω
(
−
ω
2
+
2
j
ω
+
2
)
=
−
4
(
2
−
ω
2
)
2
+
4
ω
2
−
j
2
(
2
−
ω
2
)
2
ω
[
(
2
−
ω
2
)
2
+
4
ω
2
]
\begin{aligned} G(j\omega) &= \frac{2}{j\omega(-\omega^2+2j\omega+2)} \\ &= -\frac{4}{(2-\omega^2)^2+4\omega^2}-j\frac{2(2-\omega^2)^2}{\omega[(2-\omega^2)^2+4\omega^2]} \end{aligned}
G
(
j
ω
)
=
j
ω
(
−
ω
2
+
2
j
ω
+
2
)
2
=
−
(
2
−
ω
2
)
2
+
4
ω
2
4
−
j
ω
[
(
2
−
ω
2
)
2
+
4
ω
2
]
2
(
2
−
ω
2
)
2
当
ω
=
0
+
\omega=0^+
ω
=
0
+
时,
G
(
j
0
+
)
=
−
1
−
j
∞
G(j0^+)=-1-j\infin
G
(
j
0
+
)
=
−
1
−
j
∞
,
∠
G
(
j
0
+
)
=
−
90
°
\angle G(j0^+)=-90°
∠
G
(
j
0
+
)
=
−
9
0
°
;当
ω
→
∞
\omega\rightarrow\infin
ω
→
∞
时,
G
(
j
∞
)
→
0
G(j\infin)\rightarrow0
G
(
j
∞
)
→
0
,
∠
G
(
j
∞
)
=
−
270
°
\angle G(j\infin)=-270°
∠
G
(
j
∞
)
=
−
2
7
0
°
;令
G
(
j
ω
)
G(j\omega)
G
(
j
ω
)
的虚部为零,可得
ω
=
2
\omega=\sqrt{2}
ω
=
2
,代入
G
(
j
ω
)
G(j\omega)
G
(
j
ω
)
的实部,得到奈奎斯曲线与实轴的交点为
−
0.5
-0.5
−
0
.
5
。
非线性部分,负倒描述函数为
−
1
N
(
A
)
=
−
π
A
16
1
−
(
1
A
)
2
-\frac{1}{N(A)}=-\frac{\pi A}{16\sqrt{1-\left(\cfrac{1}{A}\right)^2}}
−
N
(
A
)
1
=
−
1
6
1
−
(
A
1
)
2
π
A
当
A
→
+
∞
A\rightarrow+\infin
A
→
+
∞
时,
−
1
N
(
+
∞
)
→
−
∞
-\cfrac{1}{N(+\infin)}\rightarrow -\infin
−
N
(
+
∞
)
1
→
−
∞
;当
A
=
2
A=\sqrt{2}
A
=
2
时,负倒描述函数取最大值
−
1
N
(
2
)
≈
−
0.392
-\cfrac{1}{N(\sqrt{2})}\approx-0.392
−
N
(
2
)
1
≈
−
0
.
3
9
2
,
G
(
j
ω
)
G(j\omega)
G
(
j
ω
)
与
−
1
N
(
A
)
-\cfrac{1}{N(A)}
−
N
(
A
)
1
图像为
G
(
j
ω
)
G(j\omega)
G
(
j
ω
)
曲线与
−
1
N
(
A
)
-\cfrac{1}{N(A)}
−
N
(
A
)
1
曲线有两个交点,则
−
1
N
(
A
)
=
−
0.5
-\frac{1}{N(A)}=-0.5
−
N
(
A
)
1
=
−
0
.
5
解得
{
A
1
=
2.29
ω
=
2
rad/s
{
A
2
=
1.11
ω
=
2
rad/s
\left\{\begin{array}{l} A_1=2.29 \\ \omega=\sqrt{2}\,\text{rad/s} \end{array}\right.\ \ \left\{\begin{array}{l} A_2=1.11 \\ \omega=\sqrt{2}\,\text{rad/s} \end{array}\right.
{
A
1
=
2
.
2
9
ω
=
2
rad/s
{
A
2
=
1
.
1
1
ω
=
2
rad/s
奈奎斯曲线包围的区域为不稳定区域,
−
1
N
(
A
)
-\cfrac{1}{N(A)}
−
N
(
A
)
1
曲线沿着
A
A
A
增大的方向,由不稳定区域进入稳定区域的交点为
A
1
A_1
A
1
,
A
2
A_2
A
2
不是,因此系统产生自激振荡,振荡频率为
ω
=
2
rad/s
\omega=\sqrt{2}\,\text{rad/s}
ω
=
2
rad/s
,振幅为
A
1
=
2.29
A_1=2.29
A
1
=
2
.
2
9
。
8.某离散系统的结构图如下图所示,其中
G
d
(
z
)
=
(
z
+
0.92
)
(
z
+
3
)
z
(
z
−
1
)
(
z
+
0.5
)
G_d(z)=\cfrac{(z+0.92)(z+3)}{z(z-1)(z+0.5)}
G
d
(
z
)
=
z
(
z
−
1
)
(
z
+
0
.
5
)
(
z
+
0
.
9
2
)
(
z
+
3
)
,采样周期为
1
1
1
秒,针对单位阶跃输入信号,设计一个最少拍数字控制器
D
(
z
)
D(z)
D
(
z
)
,并判断所设计系统采样点之间是否有振荡。
将系统的开环脉冲传递函数化为
G
d
(
z
)
=
z
−
1
(
1
+
0.92
z
−
1
)
(
1
+
3
z
−
1
)
(
1
−
z
−
1
)
(
1
+
0.5
z
−
1
)
G_d(z)=\frac{z^{-1}(1+0.92z^{-1})(1+3z^{-1})}{(1-z^{-1})(1+0.5z^{-1})}
G
d
(
z
)
=
(
1
−
z
−
1
)
(
1
+
0
.
5
z
−
1
)
z
−
1
(
1
+
0
.
9
2
z
−
1
)
(
1
+
3
z
−
1
)
G
d
(
z
)
G_d(z)
G
d
(
z
)
中包含
z
−
1
z^{-1}
z
−
1
零点以及单位圆外的
z
=
−
3
z=-3
z
=
−
3
零点,最小拍数字控制器
D
(
z
)
D(z)
D
(
z
)
也应含有
z
−
1
z^{-1}
z
−
1
零点以及单位圆外的
z
=
−
3
z=-3
z
=
−
3
零点,设
Φ
(
z
)
\Phi(z)
Φ
(
z
)
的形式为
Φ
(
z
)
=
a
z
−
1
(
1
+
3
z
−
1
)
\Phi(z)=az^{-1}(1+3z^{-1})
Φ
(
z
)
=
a
z
−
1
(
1
+
3
z
−
1
)
设
Φ
e
(
z
)
\Phi_e(z)
Φ
e
(
z
)
的形式为
Φ
e
(
z
)
=
(
1
−
z
−
1
)
(
1
+
b
z
−
1
)
\Phi_e(z)=(1-z^{-1})(1+bz^{-1})
Φ
e
(
z
)
=
(
1
−
z
−
1
)
(
1
+
b
z
−
1
)
由
Φ
e
(
z
)
=
1
−
Φ
(
z
)
\Phi_e(z)=1-\Phi(z)
Φ
e
(
z
)
=
1
−
Φ
(
z
)
解得
{
a
=
0.25
b
=
0.75
\left\{\begin{array}{l} a=0.25 \\ b=0.75 \end{array}\right.
{
a
=
0
.
2
5
b
=
0
.
7
5
最小拍数字控制器的脉冲传递函数为
D
(
z
)
=
Φ
(
z
)
G
d
(
z
)
Φ
e
(
z
)
=
0.25
(
1
+
0.5
z
−
1
)
(
1
+
0.92
z
−
1
)
(
1
+
0.75
z
−
1
)
\begin{aligned} D(z)&=\frac{\Phi(z)}{G_d(z)\Phi_e(z)} \\ &=\frac{0.25(1+0.5z^{-1})}{(1+0.92z^{-1})(1+0.75z^{-1})} \end{aligned}
D
(
z
)
=
G
d
(
z
)
Φ
e
(
z
)
Φ
(
z
)
=
(
1
+
0
.
9
2
z
−
1
)
(
1
+
0
.
7
5
z
−
1
)
0
.
2
5
(
1
+
0
.
5
z
−
1
)
系统的误差输出为
E
(
z
)
=
Φ
(
z
)
R
(
z
)
=
(
1
−
z
−
1
)
(
1
+
3
z
−
1
)
⋅
1
1
−
z
−
1
=
1
+
0.75
z
−
1
\begin{aligned} E(z)&=\Phi(z)R(z) \\ &=(1-z^{-1})(1+3z^{-1})\cdot \frac{1}{1-z^{-1}} \\ &= 1+0.75z^{-1} \end{aligned}
E
(
z
)
=
Φ
(
z
)
R
(
z
)
=
(
1
−
z
−
1
)
(
1
+
3
z
−
1
)
⋅
1
−
z
−
1
1
=
1
+
0
.
7
5
z
−
1
数字控制器输出为
E
1
(
z
)
=
E
(
z
)
D
(
z
)
=
(
1
+
0.75
z
−
1
)
⋅
0.25
(
1
+
0.5
z
−
1
)
(
1
+
0.92
z
−
1
)
(
1
+
0.75
z
−
1
)
=
0.25
−
0.105
z
−
1
+
0.0966
z
−
2
−
0.089
z
−
3
+
⋯
\begin{aligned} E_1(z)&=E(z)D(z) \\ &=(1+0.75z^{-1})\cdot \frac{0.25(1+0.5z^{-1})}{(1+0.92z^{-1})(1+0.75z^{-1})} \\ &= 0.25-0.105z^{-1}+0.0966z^{-2}-0.089z^{-3}+\cdots \end{aligned}
E
1
(
z
)
=
E
(
z
)
D
(
z
)
=
(
1
+
0
.
7
5
z
−
1
)
⋅
(
1
+
0
.
9
2
z
−
1
)
(
1
+
0
.
7
5
z
−
1
)
0
.
2
5
(
1
+
0
.
5
z
−
1
)
=
0
.
2
5
−
0
.
1
0
5
z
−
1
+
0
.
0
9
6
6
z
−
2
−
0
.
0
8
9
z
−
3
+
⋯
由上式可知,最少拍系统经过一拍后,两个采样点之间的稳态误差并不为零,出现正负值交替的振荡。
9.某系统的状态空间方程:
[
x
˙
1
x
˙
2
x
˙
3
]
=
[
0
1
0
2
0
1
0
3
2
]
x
+
[
0
0
2
]
u
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix}= \begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & 1 \\ 0 & 3 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} u
⎣
⎡
x
˙
1
x
˙
2
x
˙
3
⎦
⎤
=
⎣
⎡
0
2
0
1
0
3
0
1
2
⎦
⎤
x
+
⎣
⎡
0
0
2
⎦
⎤
u
(1)若
y
=
x
1
+
2
x
2
+
3
x
3
y=x_1+2x_2+3x_3
y
=
x
1
+
2
x
2
+
3
x
3
(试写出另一种实现,使得其输入输出的物理意义均不变),且输出是第一个状态变量。
(2)若
y
=
x
1
y=x_1
y
=
x
1
,(同括号)且输出为
3
3
3
个状态变量之和。
(1)系统的能观测矩阵为
Q
o
=
[
C
C
A
C
A
2
]
=
[
1
2
3
4
10
8
20
28
20
]
Q_o= \begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 10 & 8 \\ 20 & 28 & 20 \end{bmatrix}
Q
o
=
⎣
⎡
C
C
A
C
A
2
⎦
⎤
=
⎣
⎡
1
4
2
0
2
1
0
2
8
3
8
2
0
⎦
⎤
rank
Q
o
=
3
\text{rank}\, Q_o=3
rank
Q
o
=
3
,系统完全能观,系统的能观标准型为
A
o
=
Q
o
A
Q
o
−
1
=
[
0
1
0
0
0
1
−
4
5
2
]
B
o
=
Q
o
B
=
[
6
16
52
]
C
o
=
C
Q
o
−
1
=
[
1
0
0
]
A_o=Q_oAQ_o^{-1}= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & 5 & 2 \end{bmatrix} \\ B_o=Q_oB= \begin{bmatrix} 6 \\ 16 \\ 52 \end{bmatrix} \\ C_o=CQ_o^{-1}= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}
A
o
=
Q
o
A
Q
o
−
1
=
⎣
⎡
0
0
−
4
1
0
5
0
1
2
⎦
⎤
B
o
=
Q
o
B
=
⎣
⎡
6
1
6
5
2
⎦
⎤
C
o
=
C
Q
o
−
1
=
[
1
0
0
]
系统的状态空间方程为
{
x
˙
=
[
0
1
0
0
0
1
−
4
5
2
]
x
+
[
6
16
52
]
u
y
=
[
1
0
0
]
x
\left\{\begin{array}{l} \dot x= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -4 & 5 & 2 \end{bmatrix} x + \begin{bmatrix} 6 \\ 16 \\ 52 \end{bmatrix} u \\ y= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{array}\right.
⎩
⎪
⎪
⎨
⎪
⎪
⎧
x
˙
=
⎣
⎡
0
0
−
4
1
0
5
0
1
2
⎦
⎤
x
+
⎣
⎡
6
1
6
5
2
⎦
⎤
u
y
=
[
1
0
0
]
x
(2)设
P
P
P
为变换矩阵,矩阵
C
C
C
经过变换后为
C
1
=
C
P
=
[
1
1
1
]
C_1=CP=\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}
C
1
=
C
P
=
[
1
1
1
]
则变换矩阵可取
P
=
[
1
1
1
0
1
1
0
0
1
]
P= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}
P
=
⎣
⎡
1
0
0
1
1
0
1
1
1
⎦
⎤
经过可逆线性变换后
A
o
=
P
−
1
A
P
=
[
−
2
−
4
−
5
2
2
3
0
3
2
]
B
o
=
Q
o
B
=
[
−
2
0
2
]
A_o=P^{-1}AP= \begin{bmatrix} -2 & -4 & -5 \\ 2 & 2 & 3 \\ 0 & 3 & 2 \end{bmatrix} \\ B_o=Q_oB= \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} \\
A
o
=
P
−
1
A
P
=
⎣
⎡
−
2
2
0
−
4
2
3
−
5
3
2
⎦
⎤
B
o
=
Q
o
B
=
⎣
⎡
−
2
0
2
⎦
⎤
系统的状态空间方程为
{
x
˙
=
[
−
2
−
4
−
5
2
2
3
0
3
2
]
x
+
[
−
2
0
2
]
u
y
=
[
1
1
1
]
x
\left\{\begin{array}{l} \dot x= \begin{bmatrix} -2 & -4 & -5 \\ 2 & 2 & 3 \\ 0 & 3 & 2 \end{bmatrix} x + \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} u \\ y= \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} x \end{array}\right.
⎩
⎪
⎪
⎨
⎪
⎪
⎧
x
˙
=
⎣
⎡
−
2
2
0
−
4
2
3
−
5
3
2
⎦
⎤
x
+
⎣
⎡
−
2
0
2
⎦
⎤
u
y
=
[
1
1
1
]
x
10.某系统的状态空间方程为:
{
x
˙
=
[
0
1
0
2
1
3
0
2
0
]
x
+
[
0
0
2
]
u
y
=
[
0
0
1
]
x
\left\{\begin{array}{l} \dot x= \begin{bmatrix} 0 & 1 & 0 \\ 2 & 1 & 3 \\ 0 & 2 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} u \\ y= \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x \end{array}\right.
⎩
⎪
⎪
⎨
⎪
⎪
⎧
x
˙
=
⎣
⎡
0
2
0
1
1
2
0
3
0
⎦
⎤
x
+
⎣
⎡
0
0
2
⎦
⎤
u
y
=
[
0
0
1
]
x
设计一个降维观测器,使得观测极点为
−
2
-2
−
2
、
−
5
-5
−
5
,写出降维观测器方程及状态估计的表达式。
系统的能观测矩阵为
Q
o
=
[
C
C
A
C
A
2
]
=
[
0
0
1
0
2
0
4
2
6
]
Q_o= \begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 4 & 2 & 6 \end{bmatrix}
Q
o
=
⎣
⎡
C
C
A
C
A
2
⎦
⎤
=
⎣
⎡
0
0
4
0
2
2
1
0
6
⎦
⎤
rank
Q
o
=
3
\text{rank}\, Q_o=3
rank
Q
o
=
3
,系统完全能观,
rank
C
=
1
\text{rank}C=1
rank
C
=
1
,可以设计
n
−
m
=
2
n-m=2
n
−
m
=
2
维观测器,选取
R
=
[
1
0
1
0
1
0
]
R= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
R
=
[
1
0
0
1
1
0
]
取线性变换矩阵
P
=
[
C
R
]
=
[
0
0
1
1
0
1
0
1
0
]
P= \begin{bmatrix} C \\ R \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
P
=
[
C
R
]
=
⎣
⎡
0
1
0
0
0
1
1
1
0
⎦
⎤
可得
Q
=
P
−
1
=
[
−
1
1
0
0
0
1
1
0
0
]
Q
1
=
[
−
1
0
1
]
Q
2
=
[
1
0
0
1
0
0
]
Q=P^{-1}= \begin{bmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \ \ Q_1= \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \ \ Q_2= \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}
Q
=
P
−
1
=
⎣
⎡
−
1
0
1
1
0
0
0
1
0
⎦
⎤
Q
1
=
⎣
⎡
−
1
0
1
⎦
⎤
Q
2
=
⎣
⎡
1
0
0
0
1
0
⎦
⎤
计算
A
ˉ
\bar{A}
A
ˉ
,
B
ˉ
\bar{B}
B
ˉ
A
ˉ
=
P
A
P
−
1
=
[
0
0
2
0
0
3
1
2
1
]
B
ˉ
=
P
B
=
[
2
2
0
]
A
ˉ
22
=
[
0
3
2
1
]
A
ˉ
12
=
[
0
2
]
B
ˉ
1
=
[
2
]
B
ˉ
2
=
[
2
0
]
\bar{A}=PAP^{-1}= \left[ \begin{array}{c:cc} 0 & 0 & 2 \\ \hdashline 0 & 0 & 3 \\ 1 & 2 & 1 \end{array} \right] \ \ \bar{B}=PB= \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} \\ \bar{A}_{22}= \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix} \ \ \bar{A}_{12}= \begin{bmatrix} 0 & 2 \\ \end{bmatrix} \ \ \bar{B}_{1}= \begin{bmatrix} 2 \end{bmatrix} \ \ \bar{B}_{2}= \begin{bmatrix} 2 \\ 0 \end{bmatrix}
A
ˉ
=
P
A
P
−
1
=
⎣
⎡
0
0
1
0
0
2
2
3
1
⎦
⎤
B
ˉ
=
P
B
=
⎣
⎡
2
2
0
⎦
⎤
A
ˉ
2
2
=
[
0
2
3
1
]
A
ˉ
1
2
=
[
0
2
]
B
ˉ
1
=
[
2
]
B
ˉ
2
=
[
2
0
]
根据题目期望的观测极点,得到期望特征方程
Δ
1
(
s
)
=
s
2
+
7
s
+
10
\Delta_1(s)=s^2+7s+10
Δ
1
(
s
)
=
s
2
+
7
s
+
1
0
设降维观测器矩阵为
L
=
[
l
1
l
2
]
L=\begin{bmatrix} l_1 \\ l_2 \end{bmatrix}
L
=
[
l
1
l
2
]
,则
Δ
(
s
)
=
det
[
s
I
−
(
A
ˉ
22
+
L
A
ˉ
12
)
]
=
s
2
−
(
1
+
2
l
2
)
s
−
2
(
3
−
2
l
1
)
\begin{aligned} \Delta(s)&=\det[sI-(\bar{A}_{22}+L\bar{A}_{12})] \\ &=s^2-(1+2l_2)s-2(3-2l_1) \\ \end{aligned}
Δ
(
s
)
=
det
[
s
I
−
(
A
ˉ
2
2
+
L
A
ˉ
1
2
)
]
=
s
2
−
(
1
+
2
l
2
)
s
−
2
(
3
−
2
l
1
)
比较两式可得
{
l
1
=
4
l
2
=
−
4
\left\{\begin{array}{l} l_1=4 \\ l_2=-4 \end{array}\right.
{
l
1
=
4
l
2
=
−
4
降维观测器为
z
˙
=
[
0
11
2
−
7
]
+
[
44
−
35
]
y
+
[
10
−
8
]
u
x
^
=
Q
x
ˉ
˙
=
Q
2
z
+
(
Q
1
−
Q
2
L
)
y
=
[
1
0
0
1
0
0
]
z
+
[
−
5
4
1
]
y
\dot{z}= \begin{bmatrix} 0 & 11 \\ 2 & -7 \end{bmatrix} + \begin{bmatrix} 44 \\ -35 \end{bmatrix} y + \begin{bmatrix} 10 \\ -8 \end{bmatrix} u \\ \hat{x}= Q\dot{\bar{x}}=Q_2z+(Q_1-Q_2L)y= \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} z + \begin{bmatrix} -5 \\ 4 \\ 1 \end{bmatrix} y
z
˙
=
[
0
2
1
1
−
7
]
+
[
4
4
−
3
5
]
y
+
[
1
0
−
8
]
u
x
^
=
Q
x
ˉ
˙
=
Q
2
z
+
(
Q
1
−
Q
2
L
)
y
=
⎣
⎡
1
0
0
0
1
0
⎦
⎤
z
+
⎣
⎡
−
5
4
1
⎦
⎤
y