DES 实验报告和执行原理
1. 实验目的
了解DES算法的原理,以及DES算法的使用
2. 实验原理
- DES算法介绍:DES算法作为密码体制中的对称密码体制,明文按64位进行分组,密匙长64位,密匙实际是56位参与DES运算,另外的8位被用于奇偶验证。
- 然后56位分成两个28位密匙,每半个密匙都被分别处理。在接下来的循环中,两个半密匙都被左移一位或2位,然后通过置换2产生48位子密匙,每个半密匙24位,
- 解密过程中,除了子密匙的输出顺序相反外,密匙的调度过程完全一样。整体架构如图:2-1所示。
3. DES工作
- DES是一个基于组块的加密算法,这意味着无论输入还是输出都是64位长度的。也就是说DES产生了一种最多264种的变换方法。每个64位的区块被分为2个32位的部分,左半部分L和右半部分R。(这种分割只在特定的操作中进行。)
- 比如取明文M= 123456789ABCDEF,转化为二进制,我们得到一个64位的区块,64位的区块分为两个32位的部分即
```c
M=0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
L= 0000 0001 0010 0011 0100 0101 0110 0111
R =1000 1001 1010 1011 1100 1101 1110 1111
3. 初始IP置换是的产生的过程由下表决定(DES使用56位密匙进行操作的,也就是第8,16,24,32,40,48,56,64 位没有使用,即每一组的最后一位没有使用),得到新的密匙M+
```c
M = 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010
1011 1100 1101 1110 1111
M+ = 1111000 0110011 0010101 0101111 0101010 1011001
1001111 0001111
然后,将这个秘钥拆分为左右两部分,C0 和 D0,每半边都有28 位。比如,对于新秘钥,我们得到:
C0=1111000 0110011 0010101 0101111
D0= 0101010 1011001 1001111 0001111
- 对相同定义的C0 和 D0,我们现在创建16个块Cn 和 Dn, 1<=n<=16。每一对Cn 和 Dn都是由前一对Cn-1 和 Dn-1移位而来。具体说来,对于n = 1, 2, …, 16,在前一轮移位的结果上,使用下表进行一些次数的左移操作。什么叫左移?左移指的是将除第一位外的所有位往左移一位,将第一位移动至最后一位,使得移位后的比特的位置相较于变换前成为2, 3,…, 28, 1。。
C0 = 1111000011001100101010101111
D0 = 0101010101100110011110001111
C1 = 1110000110011001010101011111
D1 = 1010101011001100111100011110
C2 = 1100001100110010101010111111
D2 = 0101010110011001111000111101
C3 = 0000110011001010101011111111
D3 = 0101011001100111100011110101
C4 = 0011001100101010101111111100
D4 = 0101100110011110001111010101
C5 = 1100110010101010111111110000
D5 = 0110011001111000111101010101
C6 = 0011001010101011111111000011
D6 = 1001100111100011110101010101
C7 = 1100101010101111111100001100
D7 = 0110011110001111010101010110
C8 = 0010101010111111110000110011
D8 = 1001111000111101010101011001
C9 = 0101010101111111100001100110
D9 = 0011110001111010101010110011
C10 = 0101010111111110000110011001
D10 = 1111000111101010101011001100
C11 = 0101011111111000011001100101
D11 = 1100011110101010101100110011
C12 = 0101111111100001100110010101
D12 = 0001111010101010110011001111
C13 = 0111111110000110011001010101
D13 = 0111101010101011001100111100
C14 = 1111111000011001100101010101
D14 = 1110101010101100110011110001
C15 = 1111100001100110010101010111
D15 = 1010101010110011001111000111
C16 = 1111000011001100101010101111
D16 = 0101010101100110011110001111
- 我们现在就可以得到第n轮的新秘钥Kn( 1<=n<=16)了。具体做法是,对每对拼合后的子秘钥CnDn,按表PC-2执行变换:
每对子秘钥有56位,但PC-2仅仅使用其中的48位。于是,第n轮的新秘钥Kn 的第1位来自组合子秘钥CnDn的第14位,第2位来自第17位,依次类推,知道新秘钥的第48位来自组合秘钥的第32位。
C1D1 = 1110000 1100110 0101010 1011111 1010101 0110011
0011110 0011110
K1 = 000110 110000 001011 101111 111111 000111 000001 110010
K2 = 011110 011010 111011 011001 110110 111100 100111 100101
K3 = 010101 011111 110010 001010 010000 101100 111110 011001
K4 = 011100 101010 110111 010110 110110 110011 010100 011101
K5 = 011111 001110 110000 000111 111010 110101 001110 101000
K6 = 011000 111010 010100 111110 010100 000111 101100 101111
K7 = 111011 001000 010010 110111 111101 100001 100010 111100
K8 = 111101 111000 101000 111010 110000 010011 101111 111011
K9 = 111000 001101 101111 101011 111011 011110 011110 000001
K10 = 101100 011111 001101 000111 101110 100100 011001 001111
K11 = 001000 010101 111111 010011 110111 101101 001110 000110
K12 = 011101 010111 000111 110101 100101 000110 011111 101001
K13 = 100101 111100 010111 010001 111110 101011 101001 000001
K14 = 010111 110100 001110 110111 111100 101110 011100 111010
K15 = 101111 111001 000110 001101 001111 010011 111100 001010
K16 = 110010 110011 110110 001011 000011 100001 011111 110101
- 上面我们通过IP置换的得到了初始M+,其中L0和R0
L0 = 0000 0001 0010 0011 0100 0101 0110 0111
R0 =1000 1001 1010 1011 1100 1101 1110 1111
我们接着执行16个迭代,对1<=n<=16,使用一个函数f。函数f输入两个区块——一个32位的数据区块和一个48位的秘钥区块Kn ——输出一个32位的区块。定义+表示异或XOR。那么让n从1循环到16,我们计算
Ln = Rn-1
Rn = Ln-1 + f(Rn-1,Kn)
这样我们就得到最终区块,也就是n = 16 的 L16R16。这个过程说白了就是,我们拿前一个迭代的结果的右边32位作为当前迭代的左边32位。对于当前迭代的右边32位,将它和上一个迭代的f函数的输出执行XOR运算。
当n=1 时,
K1 = 000110 110000 001011 101111 111111 000111 000001 110010
L1 = R0 = 1111 0000 1010 1010 1111 0000 1010 1010
R1 = L0+f(R0,K1)
计算F函数,首先将每一个Rn-1从32位扩展到48。我们把这个过程称为函数E。定义E位函数的输出,将其写成8组,每组6位。具体实现通过下表生成。
也就是说E(Rn-1) 开头的三个比特分别来自Rn-1的第32、1和2位。E(Rn-1) 末尾的2个比特分别来自Rn-1的第32位和第1位。
比如,给定R0 ,我们可以计算出E(R0) :
R0 = 1111 0000 1010 1010 1111 0000 1010 1010
E(R0) = 011110 100001 010101 010101 011110 100001 010101 010101
接着在f函数中,我们对输出E(Rn-1) 和秘钥Kn执行XOR运算:
Kn + E(Rn-1)
比如:对K1,E(R0),进行异或操作
K1 = 000110 110000 001011 101111 111111 000111 000001 110010
E(R0) = 011110 100001 010101 010101 011110 100001 010101 010101
K1+E(R0) = 011000 010001 011110 111010 100001 100110 010100 100111.
到这里我们还没有完成f函数的运算,我们仅仅使用一张表将Rn-1 从32位拓展为48位,并且对这个结果和秘钥Kn执行了异或运算。我们现在有了48位的结果,或者说8组6比特数据。我们现在要对每组的6比特执行一些奇怪的操作:我们将它作为一张被称为“S盒”的表格的地址。每组6比特都将给我们一个位于不同S盒中的地址。在那个地址里存放着一个4比特的数字。这个4比特的数字将会替换掉原来的6个比特。最终结果就是,8组6比特的数据被转换为8组4比特(一共32位)的数据。
将上一步的48位的结果写成如下形式:
Kn + E(Rn-1) =B1B2B3B4B5B6B7B8,
每个Bi 都是一个6比特的分组,我们现在计算
S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)
其中,Si(Bi) 指的是第i个S盒的输出。
为了计算每个S函数S1, S2,…, S8,取一个6位的区块作为输入,输出一个4位的区块。决定S1的表格如下
如果S1 是定义在这张表上的函数,B是一个6位的块,那么计算S1(B) 的方法是:B的第一位和最后一位组合起来的二进制数决定一个介于0和3之间的十进制数(或者二进制00到11之间)。设这个数为i。B的中间4位二进制数代表一个介于0到15之间的十进制数(二进制0000到1111)。设这个数为j。查表找到第i行第j列的那个数,这是一个介于0和15之间的数,并且它是能由一个唯一的4位区块表示的。这个区块就是函数S1 输入B得到的输出S1(B)。比如,对输入B = 011011 ,第一位是0,最后一位是1,决定了行号是01,也就是十进制的1 。中间4位是1101,也就是十进制的13,所以列号是13。查表第1行第13列我们得到数字5。这决定了输出;5是二进制0101,所以输出就是0101。也即S1(011011) = 0101。
同理,定义这8个函数S1,…,S8的表格如下所示
S1
14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
S2
15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9
S3
10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12
S4
7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14
S5
2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3
S6
12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13
S7
4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12
S8
13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6
例子:对于第一轮,我们得到这8个S盒的输出:
K1 + E(R0) = 011000 010001 011110 111010 100001 100110 010100 100111.
S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8) = 0101 1100 1000 0010 1011 0101 1001 0111
函数f的最后一步就是对S盒的输出进行一个变换来产生最终值:
f = P(S1(B1)S2(B2)…S8(B8))
变换P由如下表格定义。P输入32位数据,通过下标产生32位输出:
P
16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25
比如,对于8个S盒的输出:
S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8) = 0101 1100 1000 0010 1011 0101 1001 0111
我们得到
f = 0010 0011 0100 1010 1010 1001 1011 1011
那么,
R1 = L0 + f(R0 , K1 )
= 1100 1100 0000 0000 1100 1100 1111 1111
+ 0010 0011 0100 1010 1010 1001 1011 1011
= 1110 1111 0100 1010 0110 0101 0100 0100
在下一轮迭代中,我们的L2 = R1,这就是我们刚刚计算的结果。之后我们必须计算R2 =L1 + f(R1, K2),一直完成16个迭代。在第16个迭代之后,我们有了区块L16 and R16。接着我们逆转两个区块的顺序得到一个64位的区块: R16L16
然后对其执行一个最终的变换 IP-1 ,其定义如下表所示:
也就是说,该变换的的输出的第1位是输入的第40位,第2位是输入的第8位,一直到将输入的第25位作为输出的最后一位。
比如,如果我们使用了上述方法得到了第16轮的左右两个区块:
L16 = 0100 0011 0100 0010 0011 0010 0011 0100
R16 = 0000 1010 0100 1100 1101 1001 1001 0101
我们将这两个区块调换位置,然后执行最终变换:
R16L16 = 00001010 01001100 11011001 10010101 01000011 01000010 00110010 00110100
IP-1=-10000101 11101000 00010011 01010100 00001111 00001010 10110100 00000101
所以明文:M= 123456789ABCDEF
得到密文:85E813540F0AB405
4.实验代码
4.1 运行环境
- 运行平台:window 10
- Idea工具:eclipse
- JDK:1.8
4.2 实现代码:
package com.dome.des;
import java.security.SecureRandom;
import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.DESKeySpec;
import sun.misc.BASE64Decoder;
import sun.misc.BASE64Encoder;
public class DESDome {
public static void main(String[] args)
{
String source = "测试des加密";
String key = "123456781";
String result = encrypt(source, key);
//加密结果
System.out.println("密文:"+result);
//解密
String s=decrypt(result, key);
System.out.println("明文:"+s);
}
/*
* DES 解密
* @param cryptograph 密文
* @param key 密匙
* */
private static String decrypt(String cryptograph, String key) {
// 强加密随机生成器
SecureRandom rand=new SecureRandom();
try
{
//定义私钥的规则
DESKeySpec keySpec=new DESKeySpec(key.getBytes());
//定义密钥工厂
SecretKeyFactory factory=SecretKeyFactory.getInstance("DES");
//按照密钥规则生成密钥
SecretKey secretKey=factory.generateSecret(keySpec);
//创建加密对象
Cipher cipher =Cipher.getInstance("DES");
cipher.init(Cipher.DECRYPT_MODE,secretKey,rand);
byte[] result=new BASE64Decoder().decodeBuffer(cryptograph);
return new String(cipher.doFinal(result));
}catch(Exception e)
{
e.printStackTrace();
}
return null;
}
/**
*
* DES 加密操作
* @param source 明文
* @param key 密匙
* */
public static String encrypt(String source,String key)
{
//强加密随机数生成器
SecureRandom rand=new SecureRandom();
try
{
//创建密匙
DESKeySpec keySpec =new DESKeySpec(key.getBytes());
//创建密钥工厂
SecretKeyFactory factory= SecretKeyFactory.getInstance("DES");
//将密码规则生长密匙
SecretKey secretKey = factory.generateSecret(keySpec);
//加密对象
Cipher cipher =Cipher.getInstance("DES");
//初始化加密对象需要的属性
cipher.init(Cipher.ENCRYPT_MODE, secretKey,rand);
//开始加密
byte[] result= cipher.doFinal(source.getBytes());
//Base64加密
return new BASE64Encoder().encode(result) ;
}catch (Exception e) {
e.printStackTrace();
}
return null;
}
}
5. 实验结果