计算伪逆1
vector<vector<double>> vec_jac{ {ImgJaco(0, 0), ImgJaco(0, 1), ImgJaco(0, 2), ImgJaco(0, 3), ImgJaco(0, 4), ImgJaco(0, 5)},
{ImgJaco(1, 0), ImgJaco(1, 1), ImgJaco(1, 2), ImgJaco(1, 3), ImgJaco(1, 4), ImgJaco(1, 5)},
{ImgJaco(2, 0), ImgJaco(2, 1), ImgJaco(2, 2), ImgJaco(2, 3), ImgJaco(2, 4), ImgJaco(2, 5)},
{ImgJaco(3, 0), ImgJaco(3, 1), ImgJaco(3, 2), ImgJaco(3, 3), ImgJaco(3, 4), ImgJaco(3, 5)},
{ImgJaco(4, 0), ImgJaco(4, 1), ImgJaco(4, 2), ImgJaco(4, 3), ImgJaco(4, 4), ImgJaco(4, 5)},
{ImgJaco(5, 0), ImgJaco(5, 1), ImgJaco(5, 2), ImgJaco(5, 3), ImgJaco(5, 4), ImgJaco(5, 5)},
{ImgJaco(6, 0), ImgJaco(6, 1), ImgJaco(6, 2), ImgJaco(6, 3), ImgJaco(6, 4), ImgJaco(6, 5)},
{ImgJaco(7, 0), ImgJaco(7, 1), ImgJaco(7, 2), ImgJaco(7, 3), ImgJaco(7, 4), ImgJaco(7, 5)}, };
Mat mat(8, 6, CV_32FC1);
for (int y = 0; y < 8; ++y) {
for (int x = 0; x < 6; ++x) {
mat.at<float>(y, x) = 20*vec_jac[y][x];
}
}
Mat vec_jac_inv;
invert(mat, vec_jac_inv, cv::DECOMP_SVD);
MatrixXd ImgJaco_inv(6, 8);
for (int x = 0; x < 6; x++)
{
for (int y = 0; y < 8; y++)
{
ImgJaco_inv(x, y) = vec_jac_inv.at<float>(x, y);
}
}
cout << "jacobian矩阵的伪逆" << endl << ImgJaco_inv << endl;
计算伪逆2
MatrixXd pinv(MatrixXd A)
{
JacobiSVD<MatrixXd> svd(A, ComputeFullU | ComputeFullV);
double pinvtoler = 1.e-8; //tolerance
int row = A.rows();
int col = A.cols();
int k = min(row, col);
MatrixXd X = MatrixXd::Zero(col, row);
MatrixXd singularValues_inv = svd.singularValues();//奇异值
MatrixXd singularValues_inv_mat = MatrixXd::Zero(col, row);
for (long i = 0; i < k; ++i) {
if (singularValues_inv(i) > pinvtoler)
singularValues_inv(i) = 1.0 / singularValues_inv(i);
else singularValues_inv(i) = 0;
}
for (long i = 0; i < k; ++i)
{
singularValues_inv_mat(i, i) = singularValues_inv(i);
}
X = (svd.matrixV()) * (singularValues_inv_mat) * (svd.matrixU().transpose());
return X;
}
版权声明:本文为weixin_45302322原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。