python简单预测模型
步骤1:导入所需的库,读取测试和训练数据集。
#导入pandas、numpy包,导入LabelEncoder、random、RandomForestClassifier、GradientBoostingClassifier函数
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
import random
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
#读取训练、测试数据集
train=pd.read_csv(‘C:/Users/AnalyticsVidhya/Desktop/challenge/Train.csv’)
test=pd.read_csv(‘C:/Users/AnalyticsVidhya/Desktop/challenge/Test.csv’)
#创建训练、测试数据集标志
train=’Train’
test=’Test’
fullData =pd.concat(,axis=0) #联合训练、测试数据集
步骤2:该框架的第二步并不需要用到python,继续下一步。
步骤3:查看数据集的列名或概要
fullData.columns # 显示所有的列名称
fullData.head(10) #显示数据框的前10条记录
fullDa