一起来玩
qq群:821429104
b站:宋老狗97
我们可以借助Pytorch从文件夹中读取数据集,十分方便,但是Pytorch中没有提供数据集划分的操作,需要手动将原始的数据集划分为训练集、验证集和测试集,废话不多说,这里我写了一个工具类,帮助大家将数据集自动划分为训练集、验证集和测试集,还可以指定比例,代码如下。
# 工具类
import os
import random
import shutil
from shutil import copy2
def data_set_split(src_data_folder, target_data_folder, train_scale=0.8, val_scale=0.1, test_scale=0.1):
'''
读取源数据文件夹,生成划分好的文件夹,分为trian、val、test三个文件夹进行
:param src_data_folder: 源文件夹 E:/biye/gogogo/note_book/torch_note/data/utils_test/data_split/src_data
:param target_data_folder: 目标文件夹 E:/biye/gogogo/note_book/torch_note/data/utils_test/data_split/target_data
:param train_scale: 训练集比例
:param val_scale: 验证集比例
:param test_scale: 测试集比例
:return:
'''
print("开始数据集划分")
class_names = os.listdir(src_data_folder)
# 在目标目录下创建文件夹
split_names = ['train', 'val', 'test']
for split_name in split_names:
split_path = os.path.join(target_data_folder, split_name)
if os.path.isdir(split_path):
pass
else:
os.mkdir(split_path)
# 然后在split_path的目录下创建类别文件夹
for class_name in class_names:
class_split_path = os.path.join(split_path, class_name)
if os.path.isdir(class_split_path):
pass
else:
os.mkdir(class_split_path)
# 按照比例划分数据集,并进行数据图片的复制
# 首先进行分类遍历
for class_name in class_names:
current_class_data_path = os.path.join(src_data_folder, class_name)
current_all_data = os.listdir(current_class_data_path)
current_data_length = len(current_all_data)
current_data_index_list = list(range(current_data_length))
random.shuffle(current_data_index_list)
train_folder = os.path.join(os.path.join(target_data_folder, 'train'), class_name)
val_folder = os.path.join(os.path.join(target_data_folder, 'val'), class_name)
test_folder = os.path.join(os.path.join(target_data_folder, 'test'), class_name)
train_stop_flag = current_data_length * train_scale
val_stop_flag = current_data_length * (train_scale + val_scale)
current_idx = 0
train_num = 0
val_num = 0
test_num = 0
for i in current_data_index_list:
src_img_path = os.path.join(current_class_data_path, current_all_data[i])
if current_idx <= train_stop_flag:
copy2(src_img_path, train_folder)
# print("{}复制到了{}".format(src_img_path, train_folder))
train_num = train_num + 1
elif (current_idx > train_stop_flag) and (current_idx <= val_stop_flag):
copy2(src_img_path, val_folder)
# print("{}复制到了{}".format(src_img_path, val_folder))
val_num = val_num + 1
else:
copy2(src_img_path, test_folder)
# print("{}复制到了{}".format(src_img_path, test_folder))
test_num = test_num + 1
current_idx = current_idx + 1
print("*********************************{}*************************************".format(class_name))
print(
"{}类按照{}:{}:{}的比例划分完成,一共{}张图片".format(class_name, train_scale, val_scale, test_scale, current_data_length))
print("训练集{}:{}张".format(train_folder, train_num))
print("验证集{}:{}张".format(val_folder, val_num))
print("测试集{}:{}张".format(test_folder, test_num))
if __name__ == '__main__':
src_data_folder = "E:/biye/gogogo/note_book/torch_note/data/utils_test/data_split/src_data"
target_data_folder = "E:/biye/gogogo/note_book/torch_note/data/utils_test/data_split/target_data"
data_set_split(src_data_folder, target_data_folder)
** 注意 **
划分前你得文件夹结构应该是这样的
划分结果
tensorflow2.3 加载数据集的方式
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
def load_data_from_folder(batch_size, target_img_height, target_img_width, data_dir="F:/datas/massmass/fer2013+/ccc/"):
train_datagen = ImageDataGenerator(
rescale=1. / 255, # 重放缩因子,数值乘以1.0/255(归一化)
shear_range=0.2, # 剪切强度(逆时针方向的剪切变换角度)
zoom_range=0.2, # 随机缩放的幅度
# 进行随机水平翻转
horizontal_flip=True)
val_datagen = ImageDataGenerator(
rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
data_dir + '/train', # dictory参数,该路径下的所有子文件夹的图片都会被生成器使用,无限产生batch数据
target_size=(target_img_height, target_img_width), # 图片将被resize成该尺寸
color_mode='grayscale', # 颜色模式,graycsale或rgb(默认rgb)
batch_size=batch_size, # batch数据的大小,默认为32
class_mode='sparse') # 返回的标签形式,默认为‘category’,返回2D的独热码标签
val_generator = val_datagen.flow_from_directory(
data_dir + '/val', # 同上
target_size=(target_img_height, target_img_width),
color_mode='grayscale',
batch_size=batch_size,
class_mode='sparse')
num_class = train_generator.num_classes
return train_generator, val_generator, num_class
tensorflow2.0 加载数据集的方式
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
def load_data_from_folder(batch_size, target_img_height, target_img_width, data_dir="data/"):
emotion_classification_train_datagen = ImageDataGenerator(
rescale=1. / 255, # 重放缩因子,数值乘以1.0/255(归一化)
shear_range=0.2, # 剪切强度(逆时针方向的剪切变换角度)
zoom_range=0.2, # 随机缩放的幅度
# 进行随机水平翻转
horizontal_flip=True)
emotion_classification_val_datagen = ImageDataGenerator(
rescale=1. / 255)
emotion_classification_train_generator = emotion_classification_train_datagen.flow_from_directory(
data_dir + '/train', # dictory参数,该路径下的所有子文件夹的图片都会被生成器使用,无限产生batch数据
target_size=(target_img_height, target_img_width), # 图片将被resize成该尺寸
color_mode='grayscale', # 颜色模式,graycsale或rgb(默认rgb)
batch_size=batch_size, # batch数据的大小,默认为32
class_mode='sparse') # 返回的标签形式,默认为‘category’,返回2D的独热码标签
emotion_classification_val_generator = emotion_classification_val_datagen.flow_from_directory(
data_dir + '/val', # 同上
target_size=(target_img_height, target_img_width),
color_mode='grayscale',
batch_size=batch_size,
class_mode='sparse')
num_class = emotion_classification_train_generator.num_classes
return emotion_classification_train_generator, emotion_classification_val_generator, num_class
pytorch加载数据集的方式
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = 'data/hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
最后附上github地址
https://github.com/cmFighting/mnist_demo_torch1.6
如果帮助到您的话可以请我喝杯咖啡嗷!谢谢!
版权声明:本文为ECHOSON原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。