linux内核之关于内核解压缩的过程分析

  • Post author:
  • Post category:linux


参考文献: http://blog.sina.com.cn/s/blog_9659cd4201011o4j.html

内核版本:2.6.14

硬件:fs2410(s3c2410)

根据有关资料表示:内核启动之初内存状态如下:


内核在内存的地址

2410的datasheet 表示,内存硬件的基址是0x3000 0000 ,内核文挡表示32K(0x8000)的空间用作存放内核页表,那么0x30008000就是2410的内核在RAM中的启动地址.


关于内核解压缩的过程分析 (此部分 网络摘录)


内核压缩和解压缩代码都在目录kernel/arch/arm/boot/compressed,

编译完成后将产生vmlinux、head.o、misc.o、head-s3c2410.o、piggy.o这几个文件,

head.o是内核的头部文件,负责初始设置;

misc.o将主要负责内核的解压工作,它在head.o之后;

head-s3c2410.o文件主要针对的初始化,将在链接时与head.o合并;

piggy.o是一个中间文件,其实是一个压缩的内核(kernel/vmlinux),只不过没有和初始化文件及解压文件链接而已;

vmlinux是没有(zImage是压缩过的内核)压缩过的内核,就是由piggy.o、head.o、misc.o、head-s3c2410.o组成的。

在BootLoader完成系统的引导以后并将Linux内核调入内存之后,调用bootLinux(),

这个函数将跳转到kernel的起始位置。

如果kernel没有压缩,就可以启动了。

如果kernel压缩过,则要进行解压,在压缩过的kernel头部有解压程序。

压缩过得kernel入口第一个文件源码位置在arch/arm/boot/compressed/head.S。

它将调用函数decompress_kernel(),这个函数在文件arch/arm/boot/compressed/misc.c中,

decompress_kernel()又调用proc_decomp_setup(),arch_decomp_setup()进行设置,

然后使用在打印出信息“Uncompressing Linux…”后,调用gunzip()。将内核放于指定的位置。

压缩过的内核开始处是解压缩代码,影象中好象这段代码有0x40 大小,所以真正的内核执行代码从0x30008040开始的.

以下分析head.S文件:

(1)对于各种Arm CPU的DEBUG输出设定,通过定义宏来统一操作。

(2)设置kernel开始和结束地址,保存architecture ID。

(3)如果在ARM2以上的CPU中,用的是普通用户模式,则升到超级用户模式,然后关中断。

(4)分析LC0结构delta offset,判断是否需要重载内核地址(r0存入偏移量,判断r0是否为零)。



这里是否需要重载内核地址,我以为主要分析arch/arm/boot/Makefile、arch/arm/boot/compressed/Makefile



和arch/arm/boot/compressed/vmlinux.lds.in三个文件,主要看vmlinux.lds.in链接文件的主要段的位置,



LOAD_ADDR(_load_addr)=0x30008000,而对于TEXT_START(_text、_start)的位置只设为0,BSS_START(__bss_start)=ALIGN(4)。



对于这样的结果依赖于,对内核解压的运行方式,也就是说,内核解压前是在内存(RAM)中还是在FLASH上,



因为这里,我们的BOOTLOADER将压缩内核(zImage)移到了RAM的0x30008000位置,我们的压缩内核是在内存(RAM)从0x30008000地址开始顺序排列,



因此我们的r0获得的偏移量是载入地址(0x30008000)。

接下来的工作是要把内核镜像的相对地址转化为内存的物理地址,即重载内核地址。

(5)需要重载内核地址,将r0的偏移量加到BSS region和GOT table中。

(6)清空bss堆栈空间r2-r3。

(7)建立C程序运行需要的缓存,并赋于64K的栈空间。

(8)这时r2是缓存的结束地址,r4是kernel的最后执行地址,r5是kernel境象文件的开始地址。检查是否地址有冲突。



将r5等于r2,使decompress后的kernel地址就在64K的栈之后。

(9)调用文件misc.c的函数decompress_kernel(),解压内核于缓存结束的地方(r2地址之后)。此时各寄存器值有如下变化:



r0为解压后kernel的大小



r4为kernel执行时的地址



r5为解压后kernel的起始地址



r6为CPU类型值(processor ID)



r7为系统类型值(architecture ID)

(10)将reloc_start代码拷贝之kernel之后(r5+r0之后),首先清除缓存,而后执行reloc_start。

(11)reloc_start将r5开始的kernel重载于r4地址处。

(12)清除cache内容,关闭cache,将r7中architecture ID赋于r1,执行r4开始的kernel代码。

下面简单介绍一下解压缩过程,也就是函数decompress_kernel实现的功能:

解压缩代码位于kernel/lib/inflate.c,inflate.c是从gzip源程序中分离出来的。包含了一些对全局数据的直接引用。

在使用时需要直接嵌入到代码中。gzip压缩文件时总是在前32K字节的范围内寻找重复的字符串进行编码,

在解压时需要一个至少为32K字节的解压缓冲区,它定义为window[WSIZE]。inflate.c使用get_byte()读取输入文件,

它被定义成宏来提高效率。输入缓冲区指针必须定义为inptr,inflate.c中对之有减量操作。inflate.c调用flush_window()

来输出window缓冲区中的解压出的字节串,每次输出长度用outcnt变量表示。在flush_window()中,还必

须对输出字节串计算CRC并且刷新crc变量。在调用gunzip()开始解压之前,调用makecrc()初始化CRC计算表。

最后gunzip()返回0表示解压成功。

我们在内核启动的开始都会看到这样的输出:

Uncompressing Linux…done, booting the kernel.

这也是由decompress_kernel函数内部输出的,它调用了puts()输出字符串,

puts是在kernel/include/asm-arm/arch-s3c2410/uncompress.h中实现的。

执行完解压过程,再返回到head.S中,启动内核:

call_kernel:



bl

cache_clean_flush









bl

cache_off









mov r0, #0









mov r1, r7









@ restore architecture number









mov pc, r4









@ call kernel

下面就开始真正的内核了。