二维数组中的查找

  • Post author:
  • Post category:其他




题目描述

在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。



暴力算法

下面是这样一个规律的二维数组


1 2 3 4 

2 3 4 5 

4 6 7 10

9 11 13 15

我们对每个数字进行遍历


class Solution:

    def Find(self, target, array):

        for i in range(len(array)):

            for j in range(len(array)):

                if target == array[i][j]:

                    return True

        return False



标准解法

上面我们可以看到,题目是给定递增的顺序的,而我们使用暴力算法的时候,没有应用到它的有序的特征。


1 2 3 4 

2 3 4 5 

4 6 7 10

9 11 13 15

我们在回到刚刚的规律这块,我们能够发现,给定一个 target,我们可以比较这个数的最后一列


4

5

10

15

如果这个数在比 某一个数小,那么它肯定处于该行中,进行查找。例如我们现在要查找

7


首先比较的是 4,然后发现 4 < 7 ,因此肯定不在第一行

然后比较 5 , 5 < 7,那么也不在第二行

然后比较 10, 10 > 7,因此可能就在这一行,那么就开始在这一行进行遍历,最终找到了7

代码为:


class Solution:

    # array 二维列表

    def Find(self, target, array):

    	# 判断二维数组是否非空

        if any(array) == 0:

            return False

        for i in range(len(array)):

            # 判断最后一位是否比target更大

            if array[i][len(array) - 1] >= target:

                for j in range(len(array)):

                    if target == array[i][j]:

                        return True

        return False       



版权声明:本文为fanjia2shao原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。