对向量求导的常用公式

  • Post author:
  • Post category:其他




对向量求导的常用公式


鲁鹏


北京理工大学,宇航学院

2019.05.09

最近经常会遇到常数和向量对向量求导的计算,感觉需要总结点什么了。以后,我还会在这个文档中添加新的公式。



前提和定义

首先明确本文规定求导使用

分子布局约定



numerator layout convention

)。在这中布局约定下,函数



f

\boldsymbol{f}








f







(包括标量值函数)关于



x

R

n

\boldsymbol{x}\in\mathbb{R}^{n}








x
















R











n













的微分可以用公式



d

f

(

x

)

=

f

x

d

x

\mathrm{d}\boldsymbol{f}(\boldsymbol{x}) = \dfrac{\partial \boldsymbol{f}}{\partial\boldsymbol{x}}\mathrm{d}\boldsymbol{x}






d




f




(




x




)




=
























x





















f






















d




x







计算。向量求导有两种约定形式,

分子布局约定

(numerator layout convention)和

分母布局约定

(denominator layout convention)。

接下来给出在分子布局约定下,向量相关求导的定义。

已知



f

(

x

)

f(\boldsymbol{x})






f


(




x




)





是关于列向量



x

=

[

x

1

x

2

.

.

.

x

n

]

T

\boldsymbol{x}= [x_{1}\quad x_{2}\quad …\quad x_{n}]^{T}








x






=








[



x











1






















x











2



























x











n




















]











T













的标量函数,则



f

(

x

)

f(\boldsymbol{x})






f


(




x




)





是关于列向量



x

\boldsymbol{x}








x







的导数为





f

(

x

)

x

=

[

f

x

1

f

x

2

.

.

.

f

x

n

]

\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}} = \left[\begin{matrix} \frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} &…& \frac{\partial f}{\partial x_{n}} \end{matrix}\right]






















x



















f


(




x




)






















=










[





























x











1




































f
































































x











2




































f






























































































x











n




































f







































]







函数



f

(

x

)

f(\boldsymbol{x})






f


(




x




)





的梯度记为



f

(

x

)

\nabla f(\boldsymbol{x})









f


(




x




)





,则梯度和导数的关系如下





f

(

x

)

=

[

f

(

x

)

x

]

T

\nabla f(\boldsymbol{x}) = \left[\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}}\right]^{T}









f


(




x




)




=











[



















x



















f


(




x




)





















]













T













函数



f

(

x

)

f(\boldsymbol{x})






f


(




x




)





的Hessian矩阵是



n

×

n

n \times n






n




×








n





矩阵,记为



2

f

(

x

)

\nabla^2 f(\boldsymbol{x})


















2









f


(




x




)










2

f

(

x

)

=

[

2

f

x

1

2

2

f

x

1

x

2

.

.

.

2

f

x

1

x

n

2

f

x

2

x

1

2

f

x

2

2

.

.

.

2

f

x

2

x

n

.

.

.

.

.

.

.

.

.

.

.

.

2

f

x

n

x

1

2

f

x

n

x

2

.

.

.

2

f

x

n

2

]

\nabla^2 f(\boldsymbol{x}) = \left[\begin{matrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1}\partial x_{2}} & … & \frac{\partial^{2} f}{\partial x_{1}\partial x_{n}}\\ \frac{\partial^{2} f}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & …& \frac{\partial^{2} f}{\partial x_{2}\partial x_{n}} \\ … & … & … & … \\ \frac{\partial^{2} f}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n}\partial x_{2}} & … & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{matrix}\right]


















2









f


(




x




)




=





























































x











1










2














































2










f











































x











2























x











1














































2










f




















































x











n























x











1














































2










f
































































x











1























x











2














































2










f











































x











2










2














































2










f




















































x











n























x











2














































2










f

























































































































x











1























x











n














































2










f











































x











2























x











n














































2










f




















































x











n










2














































2










f




































































已知



F

(

x

)

=

[

f

1

(

x

)

f

2

(

x

)

.

.

.

f

m

(

x

)

]

T

F(\boldsymbol{x}) = [f_{1}(\boldsymbol{x})\quad f_{2}(\boldsymbol{x})\quad …\quad f_{m}(\boldsymbol{x})]^{T}






F


(




x




)




=








[



f











1



















(




x




)





f











2



















(




x




)










f











m



















(




x




)



]











T













是关于列向量



x

\boldsymbol{x}








x







的向量值函数,则



F

(

x

)

F(\boldsymbol{x})






F


(




x




)





关于



x

\boldsymbol{x}








x







的导数为





F

(

x

)

x

=

[

f

1

x

1

f

1

x

2

.

.

.

f

1

x

n

f

2

x

1

f

2

x

2

.

.

.

f

2

x

n

.

.

.

.

.

.

.

.

.

.

.

.

f

m

x

1

f

m

x

2

.

.

.

f

m

x

n

]

\frac{\partial F(\boldsymbol{x})}{\partial \boldsymbol{x}} = \left[\begin{matrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} &…& \frac{\partial f_{1}}{\partial x_{n}}\\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} &…& \frac{\partial f_{2}}{\partial x_{n}} \\ … & … & … & …\\ \frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} &…& \frac{\partial f_{m}}{\partial x_{n}} \end{matrix}\right]






















x



















F


(




x




)






















=





























































x











1





































f











1




























































x











1





































f











2





































































x











1





































f











m

















































































x











2





































f











1




























































x











2





































f











2





































































x











2





































f











m










































































































































x











n





































f











1




























































x











n





































f











2





































































x











n





































f











m





















































































函数



F

(

x

)

F(\boldsymbol{x})






F


(




x




)





的雅克比矩阵记为



J

J






J





,则



J

=

F

(

x

)

/

x

J = {\partial F(\boldsymbol{x})}/{\partial \boldsymbol{x}}






J




=












F


(




x




)



/








x








,雅克比矩阵



J

J






J





等于向量值函数



F

(

x

)

F(\boldsymbol{x})






F


(




x




)





关于



x

\boldsymbol{x}








x







的导数。记函数



F

(

x

)

F(\boldsymbol{x})






F


(




x




)





的梯度记为



F

(

x

)

\nabla F(\boldsymbol{x})









F


(




x




)





,梯度和导数的关系为



F

(

x

)

/

x

=

F

(

x

)

T

{\partial F(\boldsymbol{x})}/{\partial \boldsymbol{x}}=\nabla F(\boldsymbol{x})^{T}










F


(




x




)



/








x







=











F


(




x





)











T













已知向量



a

=

[

a

1

a

2

a

3

]

T

\boldsymbol{a}= [a_{1}\quad a_{2}\quad a_{3}]^{T}








a






=








[



a











1






















a











2






















a











3




















]











T













,则



a

\boldsymbol{a}








a







的叉乘矩阵



a

×

\boldsymbol{a}^{\times}









a













×













定义如下





a

×

=

[

0

a

3

a

2

a

3

0

a

1

a

2

a

1

0

]

\boldsymbol{a}^{\times} = \left[\begin{matrix} 0 & -a_{3} & a_{2}\\ a_{3} & 0 & -a_{1}\\ -a_{2} & a_{1} & 0 \end{matrix}\right]









a













×












=













































0









a











3





























a











2


















































a











3

























0









a











1















































a











2





























a











1

























0

















































有了叉乘矩阵,向量叉乘可以像等式(1)那样表示





a

×

b

=

a

×

b

(1)

\boldsymbol{a} \times \boldsymbol{b} = \boldsymbol{a}^{\times} \boldsymbol{b} \tag{1}








a






×










b






=











a













×












b









(



1



)








常用求导公式

在以上前提和定义的基础上,可以总结以下常用的求导公式,用于求函数的微分



d

f

(

x

)

=

f

x

d

x

\mathrm{d}\boldsymbol{f}(\boldsymbol{x}) = \dfrac{\partial \boldsymbol{f}}{\partial\boldsymbol{x}}\mathrm{d}\boldsymbol{x}






d




f




(




x




)




=
























x





















f






















d




x












a

a

=

a

a

=

a

T

a

(2)

\frac{\partial \lVert \boldsymbol{a}\rVert}{\partial \boldsymbol{a}} = \frac{\partial a}{\partial \boldsymbol{a}} = \frac{\boldsymbol{a}^{T}}{a} \tag{2}






















a
























a



























=
























a



















a






















=



















a

















a













T

































(



2



)






读者可以将所有向量写成坐标的形式检验下



d

a

(

a

)

\mathrm{d}a(\boldsymbol{a})






d


a


(




a




)









a

a

d

a

\dfrac{\partial a}{\partial\boldsymbol{a}}\mathrm{d}\boldsymbol{a}






















a



















a




















d




a







是否相等,明显



d

a

(

a

)

=

a

T

a

d

a

\mathrm{d}a(\boldsymbol{a}) = \dfrac{\boldsymbol{a}^{T}}{a}\mathrm{d}\boldsymbol{a}






d


a


(




a




)




=



















a

















a













T




























d




a







是成立的 。





a

T

a

a

=

a

2

a

=

2

a

T

(3)

\frac{\partial \boldsymbol{a}^{T}\boldsymbol{a}}{\partial \boldsymbol{a}} = \frac{\partial a^{2}}{\partial \boldsymbol{a}} = 2\boldsymbol{a}^{T}\tag{3}






















a






















a













T












a
























=
























a




















a











2






























=








2





a













T















(



3



)










(

A

x

)

x

=

A

(雅可比矩阵)

(4)

\frac{\partial(A \boldsymbol{x})}{\partial \boldsymbol{x}} = A (雅可比矩阵)\tag{4}






















x



















(


A




x




)






















=








A


(雅可比矩阵)







(



4



)










x

T

A

x

x

=

x

T

(

A

+

A

T

)

(5)

\frac{\partial \boldsymbol{x}^{T} A \boldsymbol{x}}{\partial \boldsymbol{x}}= \boldsymbol{x}^{T}(A + A^{T}) \tag{5}






















x






















x













T










A




x
























=











x













T










(


A




+









A











T










)







(



5



)






已知



y

=

a

×

b

+

c

\boldsymbol{y} = \boldsymbol{a} \times \boldsymbol{b}+\boldsymbol{c}








y






=










a






×










b






+










c







,则





y

b

=

y

T

y

a

×

(6)

\frac{\partial y}{\partial\boldsymbol{b}} = \frac{\boldsymbol{y}^{T}}{y}\boldsymbol{a}^{\times} \tag{6}






















b



















y






















=



















y

















y













T































a













×















(



6



)










α

r

=

[

α

V

1

α

V

2

α

V

3

]

[

V

1

r

1

V

1

r

2

V

1

r

3

V

2

r

1

V

2

r

2

V

2

r

3

V

3

r

1

V

3

r

2

V

3

r

3

]

=

α

V

V

r

(7)

\frac{\partial\alpha}{\partial\boldsymbol{r}} = \left[\begin{matrix} \frac{\partial\alpha}{\partial V_{1}} & \frac{\partial\alpha}{\partial V_{2}} & \frac{\partial\alpha}{\partial V_{3}} \end{matrix}\right] \left[\begin{matrix} \frac{\partial V_{1}}{\partial r_{1}} & \frac{\partial V_{1}}{\partial r_{2}} & \frac{\partial V_{1}}{\partial r_{3}}\\ \frac{\partial V_{2}}{\partial r_{1}} & \frac{\partial V_{2}}{\partial r_{2}} & \frac{\partial V_{2}}{\partial r_{3}}\\ \frac{\partial V_{3}}{\partial r_{1}} & \frac{\partial V_{3}}{\partial r_{2}} & \frac{\partial V_{3}}{\partial r_{3}}\\ \end{matrix}\right]= \frac{\partial\alpha}{\partial\boldsymbol{V}}\frac{\partial\boldsymbol{V}}{\partial\boldsymbol{r}} \tag{7}






















r



















α






















=










[





























V











1




































α
































































V











2




































α
































































V











3




































α







































]



























































r











1





































V











1




























































r











1





































V











2




























































r











1





































V











3

















































































r











2





































V











1




























































r











2





































V











2




























































r











2





































V











3

















































































r











3





































V











1




























































r











3





































V











2




























































r











3





































V











3




















































































=
























V



















α




































r





















V



























(



7



)










d

(

a

×

b

)

d

t

=

d

a

d

t

×

b

+

a

×

d

b

d

t

(8)

\frac{ d(\boldsymbol{a} \times \boldsymbol{b}) }{dt} = \frac{ d\boldsymbol{a} }{dt} \times \boldsymbol{b} + \boldsymbol{a} \times \frac{ d\boldsymbol{b} }{dt} \tag{8}

















d


t














d


(




a






×






b




)






















=



















d


t














d




a
























×










b






+










a






×



















d


t














d




b



























(



8



)










[

f

(

x

)

a

]

x

=

a

f

(

x

)

x

(9)

\frac{\partial[f(\boldsymbol{x})\boldsymbol{a}]}{\partial\boldsymbol{x}} = \boldsymbol{a} \frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}} \tag{9}






















x



















[


f


(




x




)




a




]






















=










a




















x



















f


(




x




)

























(



9



)






已知



ω

=

[

ω

1

ω

2

ω

3

]

T

\boldsymbol{\omega} = \begin{bmatrix} \omega_{1} & \omega_{2} & \omega_{3} \end{bmatrix}^{T}








ω






=











[














ω











1















































ω











2















































ω











3





































]













T

















r

=

[

r

1

r

2

r

3

]

T

\boldsymbol{r} = \begin{bmatrix} r_{1} & r_{2} & r_{3} \end{bmatrix}^{T}








r






=











[














r











1















































r











2















































r











3





































]













T

















I

3

I_{3}







I











3


























3

×

3

3\times3






3




×








3





单位矩阵





[

(

r

T

ω

)

r

]

r

=

(

r

T

ω

)

I

3

+

r

ω

T

(10)

\frac{\partial [(\boldsymbol{r}^{T} \boldsymbol{\omega}) \boldsymbol{r}]}{\partial \boldsymbol{r}} = (\boldsymbol{r}^{T} \boldsymbol{\omega})I_{3} + \boldsymbol{r}\boldsymbol{\omega}^{T} \tag{10}






















r



















[(





r













T












ω




)




r




]






















=








(





r













T












ω




)



I











3





















+










r







ω













T















(



10



)








叉乘运算公式

已知



ω

=

[

ω

1

ω

2

ω

3

]

T

\boldsymbol{\omega} = \begin{bmatrix} \omega_{1} & \omega_{2} & \omega_{3} \end{bmatrix}^{T}








ω






=











[














ω











1















































ω











2















































ω











3





































]













T

















r

=

[

r

1

r

2

r

3

]

T

\boldsymbol{r} = \begin{bmatrix} r_{1} & r_{2} & r_{3} \end{bmatrix}^{T}








r






=











[














r











1















































r











2















































r











3





































]













T


















ω

×

(

ω

×

r

)

=

ω

×

ω

×

r

=

[

ω

2

2

ω

3

2

ω

1

ω

2

ω

1

ω

3

ω

1

ω

2

ω

1

2

ω

3

2

ω

2

ω

3

ω

1

ω

3

ω

2

ω

3

ω

1

2

ω

2

2

]

[

r

1

r

2

r

3

]

(11)

\begin{aligned} \boldsymbol{\omega} \times (\boldsymbol{\omega}\times \boldsymbol{r}) &= \boldsymbol{\omega}^{\times}\boldsymbol{\omega}^{\times}\boldsymbol{r}\\ &=\begin{bmatrix} -\omega_{2}^{2} – \omega_{3}^{2} & \omega_{1}\omega_{2} & \omega_{1}\omega_{3}\\ \omega_{1}\omega_{2} & -\omega_{1}^{2} – \omega_{3}^{2} & \omega_{2}\omega_{3} \\ \omega_{1}\omega_{3} & \omega_{2}\omega_{3} & -\omega_{1}^{2} – \omega_{2}^{2} \end{bmatrix} \begin{bmatrix} r_{1} \\ r_{2} \\ r_{3} \end{bmatrix} \end{aligned} \tag{11}


















ω






×




(




ω






×






r




)



































=







ω













×













ω













×












r














=













































ω











2










2



























ω











3










2


























ω











1




















ω











2


























ω











1




















ω











3















































ω











1




















ω











2





























ω











1










2



























ω











3










2


























ω











2




















ω











3















































ω











1




















ω











3


























ω











2




















ω











3





























ω











1










2



























ω











2










2







































































































r











1


























r











2


























r











3





















































































(



11



)








雅克比恒等式:



a

×

(

b

×

c

)

=

b

×

(

a

×

c

)

+

c

×

(

b

×

a

)

\mathbf{a}\times(\mathbf{b}\times\mathbf{c}) = \mathbf{b}\times(\mathbf{a}\times\mathbf{c}) + \mathbf{c}\times(\mathbf{b}\times\mathbf{a})






a




×








(


b




×








c


)




=








b




×








(


a




×








c


)




+








c




×








(


b




×








a


)




拉格朗日公式:



a

×

(

b

×

c

)

=

(

a

c

)

b

(

a

b

)

c

\mathbf{a}\times(\mathbf{b}\times\mathbf{c}) = (\mathbf{a}\cdot\mathbf{c}) \mathbf{b} – (\mathbf{a}\cdot\mathbf{b}) \mathbf{c}






a




×








(


b




×








c


)




=








(


a













c


)


b













(


a













b


)


c






使用软件计算导数

可以使用编程语言提供的符号运算功能来求导,例如:Python、Julia、C++和MATLAB等等。下面给出几个简单的例子。比较出名的一个符号运算库是

symengine

,它是使用C++开发的,很多编程语言都可以使用该符号运算库。

例如,现在要求向量函数



g

=

r

r

3

\boldsymbol{g} = -\dfrac{\boldsymbol{r}}{\Vert\boldsymbol{r}\Vert^3}








g






=



























r
















3























r

























关于



r

\boldsymbol{r}








r







的雅克比矩阵,下面分别用Python和MATLAB实现。

  • 使用Python求解的代码:
import sympy as sp  # 导入符号运算库

r = sp.Matrix(sp.symbols('r_x r_y r_z', real=True));  # A 3 by 1 vector

g = -r / sp.sqrt(sp.DotProduct(r,r).doit())**3  # 计算g的表达式
dgdr = g.jacobian(r)  #  计算雅克比矩阵

dgdrs = sp.sympify(dgdr)  # 简化雅克比矩阵,有没有这一步结果竟然一样
print(sp.latex(dgdrs))  # 输出雅克比矩阵公式的latex代码

结果:





[

3

r

x

2

(

r

x

2

+

r

y

2

+

r

z

2

)

5

2

1

(

r

x

2

+

r

y

2

+

r

z

2

)

3

2

3

r

x

r

y

(

r

x

2

+

r

y

2

+

r

z

2

)

5

2

3

r

x

r

z

(

r

x

2

+

r

y

2

+

r

z

2

)

5

2

3

r

x

r

y

(

r

x

2

+

r

y

2

+

r

z

2

)

5

2

3

r

y

2

(

r

x

2

+

r

y

2

+

r

z

2

)

5

2

1

(

r

x

2

+

r

y

2

+

r

z

2

)

3

2

3

r

y

r

z

(

r

x

2

+

r

y

2

+

r

z

2

)

5

2

3

r

x

r

z

(

r

x

2

+

r

y

2

+

r

z

2

)

5

2

3

r

y

r

z

(

r

x

2

+

r

y

2

+

r

z

2

)

5

2

3

r

z

2

(

r

x

2

+

r

y

2

+

r

z

2

)

5

2

1

(

r

x

2

+

r

y

2

+

r

z

2

)

3

2

]

\left[\begin{matrix}\frac{3 r_{x}^{2}}{\left(r_{x}^{2} + r_{y}^{2} + r_{z}^{2}\right)^{\frac{5}{2}}} – \frac{1}{\left(r_{x}^{2} + r_{y}^{2} + r_{z}^{2}\right)^{\frac{3}{2}}} & \frac{3 r_{x} r_{y}}{\left(r_{x}^{2} + r_{y}^{2} + r_{z}^{2}\right)^{\frac{5}{2}}} & \frac{3 r_{x} r_{z}}{\left(r_{x}^{2} + r_{y}^{2} + r_{z}^{2}\right)^{\frac{5}{2}}}\\\frac{3 r_{x} r_{y}}{\left(r_{x}^{2} + r_{y}^{2} + r_{z}^{2}\right)^{\frac{5}{2}}} & \frac{3 r_{y}^{2}}{\left(r_{x}^{2} + r_{y}^{2} + r_{z}^{2}\right)^{\frac{5}{2}}} – \frac{1}{\left(r_{x}^{2} + r_{y}^{2} + r_{z}^{2}\right)^{\frac{3}{2}}} & \frac{3 r_{y} r_{z}}{\left(r_{x}^{2} + r_{y}^{2} + r_{z}^{2}\right)^{\frac{5}{2}}}\\\frac{3 r_{x} r_{z}}{\left(r_{x}^{2} + r_{y}^{2} + r_{z}^{2}\right)^{\frac{5}{2}}} & \frac{3 r_{y} r_{z}}{\left(r_{x}^{2} + r_{y}^{2} + r_{z}^{2}\right)^{\frac{5}{2}}} & \frac{3 r_{z}^{2}}{\left(r_{x}^{2} + r_{y}^{2} + r_{z}^{2}\right)^{\frac{5}{2}}} – \frac{1}{\left(r_{x}^{2} + r_{y}^{2} + r_{z}^{2}\right)^{\frac{3}{2}}}\end{matrix}\right]


























































(




r











x










2



















+



r











y










2



















+



r











z










2




















)
























2














5










































3



r











x










2




























































(




r











x










2



















+



r











y










2



















+



r











z










2




















)
























2














3










































1










































(




r











x










2



















+



r











y










2



















+



r











z










2




















)
























2














5










































3



r











x




















r











y



























































(




r











x










2



















+



r











y










2



















+



r











z










2




















)
























2














5










































3



r











x




















r











z
















































































(




r











x










2



















+



r











y










2



















+



r











z










2




















)
























2














5










































3



r











x




















r











y



























































(




r











x










2



















+



r











y










2



















+



r











z










2




















)
























2














5










































3



r











y










2




























































(




r











x










2



















+



r











y










2



















+



r











z










2




















)
























2














3










































1










































(




r











x










2



















+



r











y










2



















+



r











z










2




















)
























2














5










































3



r











y




















r











z
















































































(




r











x










2



















+



r











y










2



















+



r











z










2




















)
























2














5










































3



r











x




















r











z



























































(




r











x










2



















+



r











y










2



















+



r











z










2




















)
























2














5










































3



r











y




















r











z



























































(




r











x










2



















+



r











y










2



















+



r











z










2




















)
























2














5










































3



r











z










2




























































(




r











x










2



















+



r











y










2



















+



r











z










2




















)
























2














3










































1




































































  • 使用MATLAB求解的代码:
syms r [3, 1];      % 定义符号变量r
assume(r, 'real');  % 设置r为实向量

g = -r/norm(r)^3;  % 构造符号表达式g

dgdr = jacobian(g, r);   % 计算雅克比矩阵
dgdrs = simplify(dgdr);  % 简化雅克比矩阵
latex(dgdrs)            % 输出雅克比矩阵公式的latex代码

结果:





(

2

r

1

2

+

r

2

2

+

r

3

2

(

r

1

2

+

r

2

2

+

r

3

2

)

5

/

2

3

r

1

r

2

(

r

1

2

+

r

2

2

+

r

3

2

)

5

/

2

3

r

1

r

3

(

r

1

2

+

r

2

2

+

r

3

2

)

5

/

2

3

r

1

r

2

(

r

1

2

+

r

2

2

+

r

3

2

)

5

/

2

r

1

2

2

r

2

2

+

r

3

2

(

r

1

2

+

r

2

2

+

r

3

2

)

5

/

2

3

r

2

r

3

(

r

1

2

+

r

2

2

+

r

3

2

)

5

/

2

3

r

1

r

3

(

r

1

2

+

r

2

2

+

r

3

2

)

5

/

2

3

r

2

r

3

(

r

1

2

+

r

2

2

+

r

3

2

)

5

/

2

r

1

2

+

r

2

2

2

r

3

2

(

r

1

2

+

r

2

2

+

r

3

2

)

5

/

2

)

\left(\begin{array}{ccc} -\frac{-2\,{r_{1}}^2+{r_{2}}^2+{r_{3}}^2}{

{\left({r_{1}}^2+{r_{2}}^2+{r_{3}}^2\right)}^{5/2}} & \frac{3\,r_{1}\,r_{2}}{

{\left({r_{1}}^2+{r_{2}}^2+{r_{3}}^2\right)}^{5/2}} & \frac{3\,r_{1}\,r_{3}}{

{\left({r_{1}}^2+{r_{2}}^2+{r_{3}}^2\right)}^{5/2}}\\ \frac{3\,r_{1}\,r_{2}}{

{\left({r_{1}}^2+{r_{2}}^2+{r_{3}}^2\right)}^{5/2}} & -\frac{

{r_{1}}^2-2\,{r_{2}}^2+{r_{3}}^2}{

{\left({r_{1}}^2+{r_{2}}^2+{r_{3}}^2\right)}^{5/2}} & \frac{3\,r_{2}\,r_{3}}{

{\left({r_{1}}^2+{r_{2}}^2+{r_{3}}^2\right)}^{5/2}}\\ \frac{3\,r_{1}\,r_{3}}{

{\left({r_{1}}^2+{r_{2}}^2+{r_{3}}^2\right)}^{5/2}} & \frac{3\,r_{2}\,r_{3}}{

{\left({r_{1}}^2+{r_{2}}^2+{r_{3}}^2\right)}^{5/2}} & -\frac{

{r_{1}}^2+{r_{2}}^2-2\,{r_{3}}^2}{

{\left({r_{1}}^2+{r_{2}}^2+{r_{3}}^2\right)}^{5/2}} \end{array}\right)
































































(






r











1




























2









+





r











2




























2









+





r











3




























2










)














5/2



























2







r











1




























2









+





r











2




























2









+





r











3




























2


















































(






r











1




























2









+





r











2




























2









+





r











3




























2










)














5/2
























3





r











1






















r











2




























































(






r











1




























2









+





r











2




























2









+





r











3




























2










)














5/2
























3





r











1






















r











3

















































































(






r











1




























2









+





r











2




























2









+





r











3




























2










)














5/2
























3





r











1






















r











2































































(






r











1




























2









+





r











2




























2









+





r











3




























2










)














5/2



























r











1




























2












2







r











2




























2









+





r











3




























2


















































(






r











1




























2









+





r











2




























2









+





r











3




























2










)














5/2
























3





r











2






















r











3

















































































(






r











1




























2









+





r











2




























2









+





r











3




























2










)














5/2
























3





r











1






















r











3




























































(






r











1




























2









+





r











2




























2









+





r











3




























2










)














5/2
























3





r











2






















r











3































































(






r











1




























2









+





r











2




























2









+





r











3




























2










)














5/2



























r











1




























2









+





r











2




























2












2







r











3




























2















































































版权声明:本文为qq_25777815原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。