LeetCode 112. 路径总和
给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。
说明: 叶子节点是指没有子节点的节点。
示例:
给定如下二叉树,以及目标和 sum = 22,
5
/ \
4 8
/ / \
11 13 4
/ \ \
7 2 1
返回 true, 因为存在目标和为 22 的根节点到叶子节点的路径 5->4->11->2。
解题思路:递归
最直接的方法就是利用递归,遍历整棵树:如果当前节点不是叶子,对它的所有孩子节点,递归调用 hasPathSum 函数,其中 sum 值减去当前节点的权值;如果当前节点是叶子,检查 sum 值是否为 0,也就是是否找到了给定的目标和。
Python代码实现如下:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def hasPathSum(self, root: TreeNode, sum: int) -> bool:
if not root:
return False
if not root.left and not root.right and sum == root.val:
return True
left = self.hasPathSum(root.left, sum-root.val)
right = self.hasPathSum(root.right, sum-root.val)
return left or right
113. 路径总和 II
给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出:[[5,4,11,2],[5,8,4,5]]
示例 2:
输入:root = [1,2,3], targetSum = 5
输出:[]
示例 3:
输入:root = [1,2], targetSum = 0
输出:[]
提示:
树中节点总数在范围 [0, 5000] 内
-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def pathSum(self, root: TreeNode, targetSum: int) -> List[List[int]]:
if not root:
return []
if not root.left and not root.right and targetSum==root.val:
return [[root.val]]
res = []
left = self.pathSum(root.left, targetSum-root.val)
right = self.pathSum(root.right, targetSum-root.val)
for i in left+right:
res.append([root.val] + i)
return res
LeetCode 257. 二叉树的所有路径
给定一个二叉树,返回所有从根节点到叶子节点的路径。
说明: 叶子节点是指没有子节点的节点。
示例:
输入:
1
/ \
2 3
\
5
输出: [“1->2->5”, “1->3”]
解释: 所有根节点到叶子节点的路径为: 1->2->5, 1->3
解题方法与上题类似:递归与迭代
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def binaryTreePaths(self, root: TreeNode) -> List[str]:
if not root:
return []
res, queue = [], collections.deque()
queue.appendleft([root, []])
while queue:
node, tmp = queue.pop()
if not node.left and not node.right:
res.append("->".join(tmp + [str(node.val)]))
if node.left: queue.appendleft([node.left, tmp + [str(node.val)]])
if node.right: queue.appendleft([node.right, tmp + [str(node.val)]])
return res
- 不使用双端队列
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def binaryTreePaths(self, root: TreeNode) -> List[str]:
def construct(root, path):
if root is None:
return None
path += str(root.val)
if(root.left is None and root.right is None):
paths.append(path)
else:
path += '->'
construct(root.left, path)
construct(root.right, path)
paths = []
path = ''
construct(root, path)
return paths
- C++实现:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
void construct_paths(TreeNode* root, string path, vector<string>& paths) {
if (root != nullptr) {
path += to_string(root->val);
if (root->left == nullptr && root->right == nullptr) { // 当前节点是叶子节点
paths.push_back(path); // 把路径加入到答案中
} else {
path += "->"; // 当前节点不是叶子节点,继续递归遍历
construct_paths(root->left, path, paths);
construct_paths(root->right, path, paths);
}
}
}
vector<string> binaryTreePaths(TreeNode* root) {
vector<string> paths;
construct_paths(root, "", paths);
return paths;
}
};
124. 二叉树中的最大路径和(困难)
路径 被定义为一条从树中任意节点出发,沿父节点-子节点连接,达到任意节点的序列。同一个节点在一条路径序列中 至多出现一次 。该路径 至少包含一个 节点,且不一定经过根节点。
路径和 是路径中各节点值的总和。
给你一个二叉树的根节点 root ,返回其 最大路径和 。
输入:root = [1,2,3]
输出:6
解释:最优路径是 2 -> 1 -> 3 ,路径和为 2 + 1 + 3 = 6
输入:root = [-10,9,20,null,null,15,7]
输出:42
解释:最优路径是 15 -> 20 -> 7 ,路径和为 15 + 20 + 7 = 42
解题方法:动态规划 or 递归
- 代码如下:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxPathSum(self, root: TreeNode) -> int:
self.res = -sys.maxsize
self.dfs(root)
return self.res
def dfs(self, root):
if not root:
return 0
max_num = root.val
l_max_num = self.dfs(root.left)
r_max_num = self.dfs(root.right)
max_num = max(max_num, max_num + l_max_num)
max_num = max(max_num, max_num + r_max_num)
self.res = max(self.res, max_num)
return max(0, l_max_num,r_max_num) +root.val
- C++
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int maxPathSum(TreeNode* root) {
dfs(root);
return res;
}
int dfs(TreeNode* root){
if(root == NULL){
return 0;
}
int max_sum = root->val;
int l_max_sum = dfs(root->left);
int r_max_sum = dfs(root->right);
max_sum = max(max_sum, max_sum+ l_max_sum);
max_sum = max(max_sum, max_sum + r_max_sum);
res = max(res, max_sum);
return max({0, l_max_sum, r_max_sum}) + root->val;
}
private:
int res = INT_MIN;
};