讲解关于slam一系列文章汇总链接:
史上最全slam从零开始
,针对于本栏目讲解(02)Cartographer源码无死角解析-链接如下:
(02)Cartographer源码无死角解析- (00)目录_最新无死角讲解:https://blog.csdn.net/weixin_43013761/article/details/127350885
文末正下方中心提供了本人
联系方式,
点击本人照片即可显示
W
X
→
官方认证
{\color{blue}{文末正下方中心}提供了本人 \color{red} 联系方式,\color{blue}点击本人照片即可显示WX→官方认证}
文末正下方中心
提供了本人
联系方式,
点击本人照片即可显示
W
X
→
官方认证
一、前言
通过上篇博客,对 Cartographer 中常见的低级错误进行了介绍,接下来我们需要去深刻的理解一下 Cartographer 中的参数了,主要讲解的时如下几个文件:
src/cartographer_ros/cartographer_ros/configuration_files/lx_rs16_2d_outdoor.lua
src/cartographer/configuration_files/map_builder.lua
src/cartographer/configuration_files/trajectory_builder.lua
src/cartographer/configuration_files/trajectory_builder_2d.lua
src/cartographer/configuration_files/trajectory_builder_3d.lua
src/cartographer/configuration_files/pose_graph.lua
如果查看lx_rs16_2d_outdoor.lua文件,可以看到存在如下代码:
include "map_builder.lua"
include "trajectory_builder.lua"
其用法和c++可以做类比,就是把 map_builder.lua 与 trajectory_builder.lua 中的配置都都加载到 lx_rs16_2d_outdoor.lua 之中。
另外在 lx_rs16_2d_outdoor.lua 中还可以看到
options = {
......
}
其内部的参数,一般来说都是新的,也就是不不被 map_builder.lua 与 trajectory_builder.lua 包括的。如果在 lx_rs16_2d_outdoor.lua 想要修改 map_builder.lua 或者 trajectory_builder.lua 中的参数,应该如何操作呢?其实比较建档,如 lx_rs16_2d_outdoor.lua 中的如下语句:
TRAJECTORY_BUILDER_2D.use_imu_data = true
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.rotation_weight = 1.
就是对 TRAJECTORY_BUILDER_2D 中文件的修改, trajectory_builder.lua 中包含了 trajectory_builder_2d.lua 与 trajectory_builder_3d.lua,trajectory_builder.lua 的内容十分简单如下:
include "trajectory_builder_2d.lua"
include "trajectory_builder_3d.lua"
TRAJECTORY_BUILDER = {
trajectory_builder_2d = TRAJECTORY_BUILDER_2D, --导入2D追踪配置
trajectory_builder_3d = TRAJECTORY_BUILDER_3D, --导入3D追踪配置
-- pure_localization_trimmer = {
-- max_submaps_to_keep = 3, //纯定位模式下,保存子地图的最大数量。
-- },
collate_fixed_frame = true, --是否将GPS数据放入阻塞队列中,按时间排序再进行分发
collate_landmarks = false, --是否将landmarks数据放入阻塞队列中,按时间排序再进行分发
}
下面对是常用的配置文件做的注释
二、lx_rs16_2d_outdoor.lua
改文件位于 src/cartographer_ros/cartographer_ros/configuration_files/lx_rs16_2d_outdoor.lua:
include "map_builder.lua"
include "trajectory_builder.lua"
options = {
map_builder = MAP_BUILDER, -- map_builder.lua的配置信息
trajectory_builder = TRAJECTORY_BUILDER, -- trajectory_builder.lua的配置信息
map_frame = "map", -- 地图坐标系的名字
tracking_frame = "imu_link", -- 将所有传感器数据转换到这个坐标系下
published_frame = "odom", -- tf: map -> footprint
odom_frame = "odom", -- 里程计的坐标系名字
provide_odom_frame = true, -- 是否提供odom的tf, 如果为true,则tf树为map->odom->footprint
-- 如果为false tf树为map->footprint
publish_frame_projected_to_2d = false, -- 是否将坐标系投影到平面上
--use_pose_extrapolator = false, -- 发布tf时是使用pose_extrapolator的位姿还是前端计算出来的位姿
use_odometry = false, -- 是否使用里程计,如果使用要求一定要有odom的tf
use_nav_sat = false, -- 是否使用gps
use_landmarks = false, -- 是否使用landmark
num_laser_scans = 0, -- 是否使用单线激光数据
num_multi_echo_laser_scans = 0, -- 是否使用multi_echo_laser_scans数据
num_subdivisions_per_laser_scan = 1, -- 1帧数据被分成几次处理,一般为1
num_point_clouds = 1, -- 是否使用点云数据
lookup_transform_timeout_sec = 0.2, -- 查找tf时的超时时间
submap_publish_period_sec = 0.3, -- 发布数据的时间间隔
pose_publish_period_sec = 5e-3,
trajectory_publish_period_sec = 30e-3,
--表示全采样,0.5表示没两次数据,只采样一次。如果设置为0则表示丢弃所有数据
rangefinder_sampling_ratio = 1., -- 范围传感器(如单线雷达、多线雷达等)数据的采样频率
odometry_sampling_ratio = 1., --里程计采样频率
fixed_frame_pose_sampling_ratio = 1., --GPS采样频率
imu_sampling_ratio = 1., --IMU采样频率
landmarks_sampling_ratio = 1., --landmarks采样频率
}
MAP_BUILDER.use_trajectory_builder_2d = true --使用2D轨迹
TRAJECTORY_BUILDER_2D.use_imu_data = true --使用imu数据
TRAJECTORY_BUILDER_2D.min_range = 0.3 --雷达数据的最近滤波, 保存中间值
TRAJECTORY_BUILDER_2D.max_range = 100. --雷达数据的最远滤波, 保存中间值
TRAJECTORY_BUILDER_2D.min_z = 0.2 --雷达数据的最低与最高过滤, 保存中间值
--TRAJECTORY_BUILDER_2D.max_z = 1.4
--TRAJECTORY_BUILDER_2D.voxel_filter_size = 0.02
--TRAJECTORY_BUILDER_2D.adaptive_voxel_filter.max_length = 0.5
--TRAJECTORY_BUILDER_2D.adaptive_voxel_filter.min_num_points = 200.
--TRAJECTORY_BUILDER_2D.adaptive_voxel_filter.max_range = 50.
--TRAJECTORY_BUILDER_2D.loop_closure_adaptive_voxel_filter.max_length = 0.9
--TRAJECTORY_BUILDER_2D.loop_closure_adaptive_voxel_filter.min_num_points = 100
--TRAJECTORY_BUILDER_2D.loop_closure_adaptive_voxel_filter.max_range = 50.
TRAJECTORY_BUILDER_2D.use_online_correlative_scan_matching = false --是否使用相关性暴力匹配
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.occupied_space_weight = 1. --ceres扫匹配中使用点云优化的残差权重
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.translation_weight = 1. --ceres扫匹配中使用推断器推断的机器人位置作为优化目标,其残差项权重
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.rotation_weight = 1. --ceres扫描匹配中角度优化残差权重
--TRAJECTORY_BUILDER_2D.ceres_scan_matcher.ceres_solver_options.max_num_iterations = 12
--TRAJECTORY_BUILDER_2D.motion_filter.max_distance_meters = 0.1
--TRAJECTORY_BUILDER_2D.motion_filter.max_angle_radians = 0.004
--TRAJECTORY_BUILDER_2D.imu_gravity_time_constant = 1. //重力时间常数
TRAJECTORY_BUILDER_2D.submaps.num_range_data = 80.
TRAJECTORY_BUILDER_2D.submaps.grid_options_2d.resolution = 0.1
POSE_GRAPH.optimize_every_n_nodes = 160.
POSE_GRAPH.constraint_builder.sampling_ratio = 0.3
POSE_GRAPH.constraint_builder.max_constraint_distance = 15.
POSE_GRAPH.constraint_builder.min_score = 0.48
POSE_GRAPH.constraint_builder.global_localization_min_score = 0.60
return options
不再 options 中的参数是一些可能经常需要修改的,写在这里是对前面进行覆盖,方便配置。
三、trajectory_builder_2d.lua
文件位于 src/cartographer/configuration_files/trajectory_builder_2d.lua
TRAJECTORY_BUILDER_2D = {
use_imu_data = true, -- 是否使用imu数据
min_range = 0., -- 雷达数据的最近滤波, 保存中间值
max_range = 30., -- 雷达数据的最远滤波, 保存中间值
min_z = -0.8, -- 雷达数据的最高与最低的过滤, 保存中间值
max_z = 2.,
missing_data_ray_length = 5., -- 超过最大距离范围的数据点用这个距离代替
num_accumulated_range_data = 1, -- 几帧有效的点云数据进行一次扫描匹配
voxel_filter_size = 0.025, -- 体素滤波的立方体的边长
-- 使用固定的voxel滤波之后, 再使用自适应体素滤波器
-- 体素滤波器 用于生成稀疏点云 以进行 扫描匹配
adaptive_voxel_filter = {
max_length = 0.5, -- 尝试确定最佳的立方体边长, 边长最大为0.5
min_num_points = 200, -- 如果存在 较多点 并且大于'min_num_points', 则减小体素长度以尝试获得该最小点数
max_range = 50., -- 距远离原点超过max_range 的点被移除
},
-- 闭环检测的自适应体素滤波器, 用于生成稀疏点云 以进行 闭环检测
loop_closure_adaptive_voxel_filter = {
max_length = 0.9,
min_num_points = 100,
max_range = 50.,
},
-- 是否使用 real_time_correlative_scan_matcher 为ceres提供先验信息
-- 计算复杂度高 , 但是很鲁棒 , 在odom或者imu不准时依然能达到很好的效果
use_online_correlative_scan_matching = false,
real_time_correlative_scan_matcher = {
linear_search_window = 0.1, -- 线性搜索窗口的大小
angular_search_window = math.rad(20.), -- 角度搜索窗口的大小
translation_delta_cost_weight = 1e-1, -- 用于计算各部分score的权重
rotation_delta_cost_weight = 1e-1,
},
-- ceres匹配的一些配置参数
ceres_scan_matcher = {
occupied_space_weight = 1.,
translation_weight = 10.,
rotation_weight = 40.,
ceres_solver_options = {
use_nonmonotonic_steps = false,
max_num_iterations = 20,
num_threads = 1,
},
},
-- 为了防止子图里插入太多数据, 在插入子图之前之前对数据进行过滤
motion_filter = {
max_time_seconds = 5.,
max_distance_meters = 0.2,
max_angle_radians = math.rad(1.),
},
-- TODO(schwoere,wohe): Remove this constant. This is only kept for ROS.
imu_gravity_time_constant = 10.,
-- 位姿预测器
pose_extrapolator = {
use_imu_based = false, --是否使使用推断Imu
constant_velocity = {
imu_gravity_time_constant = 10., --重力时间常数
pose_queue_duration = 0.001, --队列存中最后一个数据与第一个数据的最大时间间隔
},
imu_based = {
pose_queue_duration = 5., --队列存中最后一个数据与第一个数据的最大时间间隔
gravity_constant = 9.806, --重力常量
pose_translation_weight = 1., --pose位移权重
pose_rotation_weight = 1., --pose旋转权重
imu_acceleration_weight = 1., --IMU加速度权重
imu_rotation_weight = 1., --IMU加速度权重
odometry_translation_weight = 1., --里程计平移权重
odometry_rotation_weight = 1., -里程计方向权重
solver_options = {
use_nonmonotonic_steps = false;
max_num_iterations = 10;
num_threads = 1;
},
},
},
-- 子图相关的一些配置
submaps = {
num_range_data = 90, -- 一个子图里插入雷达数据的个数的一半
grid_options_2d = {
grid_type = "PROBABILITY_GRID", -- 地图的种类, 还可以是tsdf格式
resolution = 0.05,
},
range_data_inserter = {
range_data_inserter_type = "PROBABILITY_GRID_INSERTER_2D",
-- 概率占用栅格地图的一些配置
probability_grid_range_data_inserter = {
insert_free_space = true,
hit_probability = 0.55,
miss_probability = 0.49,
},
-- tsdf地图的一些配置
tsdf_range_data_inserter = {
truncation_distance = 0.3,
maximum_weight = 10.,
update_free_space = false,
normal_estimation_options = {
num_normal_samples = 4,
sample_radius = 0.5,
},
project_sdf_distance_to_scan_normal = true,
update_weight_range_exponent = 0,
update_weight_angle_scan_normal_to_ray_kernel_bandwidth = 0.5,
update_weight_distance_cell_to_hit_kernel_bandwidth = 0.5,
},
},
},
}
四、trajectory_builder_3d.lua
文件位于 src/cartographer/configuration_files/trajectory_builder_3d.lua
MAX_3D_RANGE = 60.
INTENSITY_THRESHOLD = 40
TRAJECTORY_BUILDER_3D = {
min_range = 1.,
max_range = MAX_3D_RANGE,
num_accumulated_range_data = 1, --累计几帧点云进行一次扫描匹配
voxel_filter_size = 0.15,
-- 在3d slam 时会有2个自适应体素滤波, 一个生成高分辨率点云, 一个生成低分辨率点云
high_resolution_adaptive_voxel_filter = {
max_length = 2.,
min_num_points = 150,
max_range = 15.,
},
low_resolution_adaptive_voxel_filter = {
max_length = 4.,
min_num_points = 200,
max_range = MAX_3D_RANGE,
},
use_online_correlative_scan_matching = false,
real_time_correlative_scan_matcher = {
linear_search_window = 0.15,
angular_search_window = math.rad(1.),
translation_delta_cost_weight = 1e-1,
rotation_delta_cost_weight = 1e-1,
},
ceres_scan_matcher = {
-- 在3D中,occupied_space_weight_0和occupied_space_weight_1参数分别与高分辨率和低分辨率滤波点云相关
occupied_space_weight_0 = 1.,
occupied_space_weight_1 = 6.,
intensity_cost_function_options_0 = {
weight = 0.5,
huber_scale = 0.3,
intensity_threshold = INTENSITY_THRESHOLD,
},
translation_weight = 5.,
rotation_weight = 4e2,
only_optimize_yaw = false,
ceres_solver_options = {
use_nonmonotonic_steps = false,
max_num_iterations = 12,
num_threads = 1,
},
},
motion_filter = {
max_time_seconds = 0.5,
max_distance_meters = 0.1,
max_angle_radians = 0.004,
},
rotational_histogram_size = 120,
-- TODO(schwoere,wohe): Remove this constant. This is only kept for ROS.
imu_gravity_time_constant = 10.,
pose_extrapolator = {
use_imu_based = false, --是否使用Imu推断
constant_velocity = {
imu_gravity_time_constant = 10., --重力时间常数
pose_queue_duration = 0.001, --队列存中最后一个数据与第一个数据的最大时间间隔
},
-- TODO(wohe): Tune these parameters on the example datasets.
imu_based = {
pose_queue_duration = 5., --队列存中最后一个数据与第一个数据的最大时间间隔
gravity_constant = 9.806, --重力常量
pose_translation_weight = 1., --pose位移权重
pose_rotation_weight = 1., --pose旋转权重
imu_acceleration_weight = 1., --IMU加速度权重
imu_rotation_weight = 1., --IMU方向(位姿)权重
odometry_translation_weight = 1., --里程计平移权重
odometry_rotation_weight = 1., --里程计方向权重
solver_options = {
use_nonmonotonic_steps = false;
max_num_iterations = 10;
num_threads = 1;
},
},
},
submaps = {
-- 2种分辨率的地图
high_resolution = 0.10, -- 用于近距离测量的高分辨率hybrid网格 for local SLAM and loop closure, 用来与小尺寸voxel进行精匹配
high_resolution_max_range = 20., -- 在插入 high_resolution map 之前过滤点云的最大范围
low_resolution = 0.45,
num_range_data = 160, -- 用于远距离测量的低分辨率hybrid网格 for local SLAM only, 用来与大尺寸voxel进行粗匹配
range_data_inserter = {
hit_probability = 0.55,
miss_probability = 0.49,
num_free_space_voxels = 2,
intensity_threshold = INTENSITY_THRESHOLD,
},
},
-- When setting use_intensites to true, the intensity_cost_function_options_0
-- parameter in ceres_scan_matcher has to be set up as well or otherwise
-- CeresScanMatcher will CHECK-fail.
use_intensities = false,
}
五、pose_graph.lua
该文件位于 src/cartographer/configuration_files/pose_graph.lua
POSE_GRAPH = {
-- 每隔多少个节点执行一次后端优化
optimize_every_n_nodes = 90,
-- 约束构建的相关参数
constraint_builder = {
sampling_ratio = 0.3, -- 对局部子图进行回环检测时的计算频率, 数值越大, 计算次数越多
max_constraint_distance = 15., -- 对局部子图进行回环检测时能成为约束的最大距离
min_score = 0.55, -- 对局部子图进行回环检测时的最低分数阈值
global_localization_min_score = 0.6, -- 对整体子图进行回环检测时的最低分数阈值
loop_closure_translation_weight = 1.1e4,
loop_closure_rotation_weight = 1e5,
log_matches = true, -- 打印约束计算的log
-- 基于分支定界算法的2d粗匹配器
fast_correlative_scan_matcher = {
linear_search_window = 7.,
angular_search_window = math.rad(30.),
branch_and_bound_depth = 7,
},
-- 基于ceres的2d精匹配器
ceres_scan_matcher = {
occupied_space_weight = 20.,
translation_weight = 10.,
rotation_weight = 1.,
ceres_solver_options = {
use_nonmonotonic_steps = true,
max_num_iterations = 10,
num_threads = 1,
},
},
-- 基于分支定界算法的3d粗匹配器
fast_correlative_scan_matcher_3d = {
branch_and_bound_depth = 8,
full_resolution_depth = 3,
min_rotational_score = 0.77,
min_low_resolution_score = 0.55,
linear_xy_search_window = 5.,
linear_z_search_window = 1.,
angular_search_window = math.rad(15.),
},
-- 基于ceres的3d精匹配器
ceres_scan_matcher_3d = {
occupied_space_weight_0 = 5.,
occupied_space_weight_1 = 30.,
translation_weight = 10.,
rotation_weight = 1.,
only_optimize_yaw = false,
ceres_solver_options = {
use_nonmonotonic_steps = false,
max_num_iterations = 10,
num_threads = 1,
},
},
},
matcher_translation_weight = 5e2,
matcher_rotation_weight = 1.6e3,
-- 优化残差方程的相关参数
optimization_problem = {
huber_scale = 1e1, -- 值越大,(潜在)异常值的影响就越大
acceleration_weight = 1.1e2, -- 3d里imu的线加速度的权重
rotation_weight = 1.6e4, -- 3d里imu的旋转的权重
-- 前端结果残差的权重
local_slam_pose_translation_weight = 1e5,
local_slam_pose_rotation_weight = 1e5,
-- 里程计残差的权重
odometry_translation_weight = 1e5,
odometry_rotation_weight = 1e5,
-- gps残差的权重
fixed_frame_pose_translation_weight = 1e1,
fixed_frame_pose_rotation_weight = 1e2,
fixed_frame_pose_use_tolerant_loss = false,
fixed_frame_pose_tolerant_loss_param_a = 1,
fixed_frame_pose_tolerant_loss_param_b = 1,
log_solver_summary = false,
use_online_imu_extrinsics_in_3d = true,
fix_z_in_3d = false,
ceres_solver_options = {
use_nonmonotonic_steps = false,
max_num_iterations = 50,
num_threads = 7,
},
},
max_num_final_iterations = 200, -- 在建图结束之后执行一次全局优化, 不要求实时性, 迭代次数多
global_sampling_ratio = 0.003, -- 纯定位时候查找回环的频率
log_residual_histograms = true,
global_constraint_search_after_n_seconds = 10., -- 纯定位时多少秒执行一次全子图的约束计算
-- overlapping_submaps_trimmer_2d = {
-- fresh_submaps_count = 1,
-- min_covered_area = 2,
-- min_added_submaps_count = 5,
-- },
}
六、调参总结
待写
.
.
.
.
.
.
……
……
七、结语
暂时还没有对参数做很详细的介绍,在后续分析源码的过程中,会对该篇博客增加更多详细的介绍。另外,看了这些参数之后,一脸懵逼,完全不知道怎么回事,这是正常的,因为还没有分析源码,等分析源码之后,大家就明白具体是怎么回事了。