使用jdk17 搭建Hadoop3.3.5和Spark3.3.2 on Yarn集群模式

  • Post author:
  • Post category:其他




搭建Hadoop3.3.5和Spark3.3.2 on Yarn集群模式

准备四台虚拟机或者物理机,我使用虚拟机,需要使用80G外存

我先准备一台虚拟机,配置完成后克隆出剩下的三台,这样可以解决配置时间



1. 创建一台虚拟机

这里我使用的是Centos8.5,虚拟机外存20G,内存4G,我安装的是带桌面版的


阿里Centos8.5下载地址

在这里插入图片描述

使用VMware安装一台虚拟机

安装过程中设置install source

在这里插入图片描述

http://mirrors.aliyun.com/centos/8-stream/BaseOS/x86_64/os/

在这里插入图片描述



2. 安装jdk17



(1)下载jdk17


jdk17下载地址

在这里插入图片描述

我下载的是rmp的这个



(2)安装jdk17

我把所有的软件都安装在了

/opt

下面

创建一个文件夹

/java17

把安装包上传到该文件夹

在这里插入图片描述

在这里解压

rpm -ivh 软件包名字

在这里插入图片描述



(3)配置环境变量

进入**/usr/lib/jvm/jdk-17-oracle-x64**,可以看到刚才的java就安装在这里了

在这里插入图片描述

打开**/etc/proflie**文件,添加如下代码来配置环境变量

export JAVA_HOME=/usr/lib/jvm/jdk-17-oracle-x64
export PATH=$PATH:$JAVA_HOME/bin;
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar;
export set JAVA_OPTS="--add-opens java.base/java.lang=ALL-UNNAMED"

在这里插入图片描述

之后输入下面的命令,让配置生效

source /etc/profile

在这里插入图片描述

输入$Java_HOME出现路径,说明配置成功



3. 虚拟机之间互信



(1)克隆虚拟机

现在完成了一台虚拟机的配置,把这台虚拟机再克隆三份

在这里插入图片描述

点击克隆

在这里插入图片描述

点下一步

在这里插入图片描述

在这里插入图片描述

选择位置

在这里插入图片描述

在这里插入图片描述

创建完成一台,接下来继续创建

在这里插入图片描述

最终的效果

在这里插入图片描述



(2)修改每台虚拟机的hostname

一主三从

登陆时选择root用户登录

改完后四台主机的hostname分别为:master vice1 vice2 vice3 vice4



(3)每台虚拟机生成私钥和公钥

在 **/**目录下输入命令

ssh-keygen -t rsa

在这里插入图片描述

出现如图所示的情况时,按下

回车

在这里插入图片描述

继续按下

回车

在这里插入图片描述

再按下

回车

一共按下三次回车

在这里插入图片描述

创建成功,之后可以在**/**目录下看到一个

.ssh

的隐藏文件

在这里插入图片描述



(4)创建公用公钥(免密登录)

把**.pub**文件打开,复制出里面的内容,把内容复制到一个临时的txt中,我复制到了windows桌面的一个文件里

在这里插入图片描述

在这里插入图片描述

之后把每台虚拟机的

.pub

文件中的内容都复制到这个临时的txt中

在这里插入图片描述

此时我们有了四台虚拟机的公钥

把这个txt临时文件改名为

authorized_keys


在这里插入图片描述

之后把这个文件放到每台虚拟机的

/.ssh

目录下

在这里插入图片描述



(5)关闭防火墙

关闭防火墙,每台虚拟机都需要关闭

systemctl stop firewalld 
systemctl disable firewalld

在这里插入图片描述



(6)配置hosts文件

获取每台虚拟机的ip,写入每台虚拟机的hosts文件

hosts文件路径是

/etc/hosts

在这里插入图片描述

修改内容

在这里插入图片描述

192.168.186.148 master 
192.168.186.149 vice1 
192.168.186.150 vice2 
192.168.186.151 vice3 

这4个分别对应四台虚拟机的hostname和ip地址

使用

ifconfig

可以查看IP地址

在这里插入图片描述


每台虚拟机都需要完成hosts的配置



(7)机器之间相互通信

在每台虚拟机上,分别与其他虚拟机进行通信

输入命令

ssh master/vice

与master通讯就输入

ssh master

第一次通信会出现让你输入yes的情况,如果要输入密码,那么就是产生公钥和私钥环节出错,重新进行产生公钥和私钥

在这里插入图片描述

输入yes

在这里插入图片描述

此时就通信成功了,之后输入exit退出,再试一次,看看需不需要输入yes或者密码

在这里插入图片描述

此时直接进来了,说明互信成功,接下来退出去,与其他虚拟机互信,自己与自己也互信一次

如果出现以下问题,说明hosts文件没有配置或者配置错误

在这里插入图片描述



4. 安装hadoop



(1)下载hadoop3.3.5


hadoop3.3.5下载地址

在这里插入图片描述

下载完成后上传到虚拟机



(2)上传hadoop3.3.5到虚拟机

把安装包上传到

/opt

目录下

在这里插入图片描述

解压

tar -xvzf 安装包

在这里插入图片描述

解压完成

在这里插入图片描述



(3)配置core-site.xml

进入

/opt/hadoop-3.3.5/etc/hadoop

目录

在这里插入图片描述

打开

core-site.xml

,加入如下内容

<configuration>
	<property>
	  <name>fs.defaultFS</name>
	  <value>hdfs://master:9000</value>
	</property>
	 
	<property>
	  <name>hadoop.tmp.dir</name>
	  <value>/opt/hadoop-3.3.5/tmp</value>
	</property>
	
	<property>
	    <name>hadoop.http.staticuser.user</name>
	    <value>root</value>
	</property>
</configuration>



(4)配置hadoop-env.sh

在这里插入图片描述

配置JAVA_HOME

在这里插入图片描述

export JAVA_HOME=/usr/lib/jvm/jdk-17-oracle-x64

设置java虚拟机启动参数

在这里插入图片描述

export HADOOP_OPTS="--add-opens java.base/java.lang=ALL-UNNAMED"



(5)配置hdfs-site.xml

在这里插入图片描述

添加如下代码

<configuration>

	<property>
	   <name>dfs.namenode.http-address</name>
	   <value>master:9870</value>
	</property>
	
	<property>
	    <name>dfs.namenode.secondary.http-address</name>
	    <value>master:50090</value>
	</property>
	
	<property>
	  <name>dfs.replication</name>
	  <value>3</value>
	</property>
 
</configuration>



(6)配置mapred-site.xml

在这里插入图片描述

<configuration>
	<property>
	  <name>mapreduce.framework.name</name>
	  <value>yarn</value>
	</property>
	<property>
	  <name>mapreduce.jobhistory.address</name>
	  <value>master:10020</value>
	</property>
	<property>
	  <name>mapreduce.jobhistory.webapp.address</name>
	  <value>master:19888</value>
	</property>

</configuration>



(7)配置workers

在这里插入图片描述

在这里插入图片描述



(8)配置yarn-site.xml

在这里插入图片描述

<configuration>

<property>
  <name>yarn.nodemanager.local-dirs</name>
  <value>/opt/localdir</value>
</property>
<property>
  <name>yarn.nodemanager.aux-services</name>
  <value>mapreduce_shuffle</value>
</property>
<property>
  <name>yarn.resourcemanager.hostname</name>
  <value>master</value>
</property>

</configuration>



(9)创建localdir



/opt

目录下创建localdir

在这里插入图片描述



(10)配置hadoop环境变量



/etc/profile

文件中加入如下代码

export HADOOP_HOME=/opt/hadoop-3.3.5
export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

启用配置

source /etc/profile

至此,一台虚拟机配置完毕,接下来配置其他虚拟器



5. 启动hadoop

现在,四台虚拟机已经都安装了hadoop,并且环境变量已经配置成功,下面就是启动hadoop了

确保四台机子都已经打开



(1)格式化 NameNode

在主节点master机器上运行如下命令

hdfs namenode -format

在这里插入图片描述



(2)启动hadoop

start-all.sh

出现报错

在这里插入图片描述

解决方法:在每个虚拟机的

/etc/profile

文件中加入如下代码

export HDFS_NAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root

启用配置

source /etc/profile

之后再次运行start-all.sh

在这里插入图片描述

启动成功



(3)查看进程

使用 jps 命令

主节点查看

在这里插入图片描述

从节点查看

在这里插入图片描述

出现上述两个图片中的进程,表示hadoop启动成功



(4)查看 web 界面

在浏览器输入ip

http://主节点IP地址:9870/

在这里插入图片描述

成功进入

在这里插入图片描述

可以看到活着的结点有3个

关闭hadoop,在master节点输入下面的命令

stop-all.sh

在这里插入图片描述



6. 安装Spark 使用Spark on Yarn集群模式



(1)下载Spark3.3.2


https://www.apache.org/dyn/closer.lua/spark/spark-3.3.2/spark-3.3.2-bin-without-hadoop.tgz

下载的是没有自带hadoop的版本

在这里插入图片描述



(2)上传Spark3.3.2到虚拟机

在这里插入图片描述

解压

tar -xzvf spark-3.3.2-bin-without-hadoop.tgz

在这里插入图片描述

给文件夹改个名字,改为spark

在这里插入图片描述



(3)配置spark-defaults.conf

进入

/opt/spark/conf

目录下

在这里插入图片描述

把spark-defaults.conf.template文件的.template删除

在这里插入图片描述

修改其内容

spark.master spark://master:7077
spark.eventLog.enabled true
spark.eventLog.dir hdfs://master:8020/spark-eventlog
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.driver.memory 5g
spark.executor.extraJavaOptions -XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three" --add-opens java.base/java.lang=ALL-UNNAMED
spark.driver.extraJavaOptions --add-opens java.base/java.lang=ALL-UNNAMED

在这里插入图片描述



(4)配置workers

创建workers文件,并修改内容

在这里插入图片描述

在这里插入图片描述

或者把.template文件修改

在这里插入图片描述



(5)配置spark-env.sh

把spark-env.sh.template文件的.template删除

在这里插入图片描述

修改其内容

export JAVA_HOME=/usr/lib/jvm/jdk-17-oracle-x64
export HADOOP_CONF_DIR=/opt/hadoop-3.3.5/etc/hadoop
export SPARK_DIST_CLASSPATH=$(/opt/hadoop-3.3.5/bin/hadoop classpath)

在这里插入图片描述



(6)配置Spark环境变量



/etc/profile

文件中加入如下代码

export SPARK_HOME=/opt/spark
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin

在这里插入图片描述

启用配置

source /etc/profile

至此,一台虚拟机的spark配置完毕,接下来配置其他虚拟器,过程与该虚拟机配置过程一致



7. 启动Spark

现在,四台虚拟机已经都安装了Spark,并且环境变量已经配置成功,下面就是启动Spark了

确保四台机子都已经打开



(1)在hdfs环境中创建出日志存放位置

先启动hadoop,start-all.sh

进入浏览器界面,访问hadoop的web页面,点击utilities

在这里插入图片描述

创建文件夹 /spark-eventlog

在这里插入图片描述

在这里插入图片描述

点击create

在这里插入图片描述

创建成功



(2)启动spark

进入

/opt/spark/sbin

目录下

输入如下命令启动

./start-all.sh

在这里插入图片描述

如果出现 permission deny或者权限不足,需要把对应虚拟机的spark文件夹加权限



(3)web访问

访问网址

http://主节点IP地址:8080/

在这里插入图片描述



(4)使用spark计算圆周率

在主节点上输入一下命令

spark-submit --master yarn --deploy-mode cluster --class org.apache.spark.examples.SparkPi /opt/spark/examples/jars/spark-examples_2.12-3.3.2.jar 100

这个

/opt/spark/examples/jars/spark-examples_2.12-3.3.2.jar

是spark路径下的一个jar包,是官方提供的样例

在这里插入图片描述

100表示运行100次

下面是运行过程

在这里插入图片描述

运行出现问题

在这里插入图片描述

修改

/opt/spark/conf/spark-defaults.conf

文件

在这里插入图片描述

spark.master spark://master:7077
spark.eventLog.enabled true
spark.eventLog.dir hdfs://master:9000/spark-eventlog
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.driver.memory 5g
spark.executor.extraJavaOptions -XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three" --add-opens java.base/java.lang=ALL-UNNAMED
spark.driver.extraJavaOptions --add-opens java.base/java.lang=ALL-UNNAMED

其他的虚拟机也要修改

接下来关闭spark,再启动

关闭使用 ./stop-all.sh, 注意要在spark的sbin目录下

在这里插入图片描述

再计算PI

在这里插入图片描述

这次出现了running,表示正在计算中,说明一切正常

在这里插入图片描述

执行结束



(5)查看运行结果

访问下面的url

http://主节点IP地址:8088/cluster

点击下面最后一次的id,因为前两次都出现了错误,所以点开看不到计算结果

在这里插入图片描述

进来后点击Logs

在这里插入图片描述

如果进不去这个页面

在这里插入图片描述

把vice3换成对应虚拟机的ip地址就可以访问了

在这里插入图片描述

接下来点击stdout

在这里插入图片描述

可以看到出现了结果PI

在这里插入图片描述

此时说明,spark集群搭建成功,hadoop集群搭建成功



版权声明:本文为qq_37354060原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。