matlab toolbox kalman same name,EKF.m · jayvee/robotics-toolbox-matlab – Gitee.com

  • Post author:
  • Post category:其他


%EKF Extended Kalman Filter for navigation

%

% Extended Kalman filter for optimal estimation of state from noisy

% measurments given a non-linear dynamic model. This class is specific to

% the problem of state estimation for a vehicle moving in SE(2).

%

% This class can be used for:

% – dead reckoning localization

% – map-based localization

% – map making

% – simultaneous localization and mapping (SLAM)

%

% It is used in conjunction with:

% – a kinematic vehicle model that provides odometry output, represented

% by a Vehicle sbuclass object.

% – The vehicle must be driven within the area of the map and this is

% achieved by connecting the Vehicle subclass object to a Driver object.

% – a map containing the position of a number of landmark points and is

% represented by a LandmarkMap object.

% – a sensor that returns measurements about landmarks relative to the

% vehicle’s pose and is represented by a Sensor object subclass.

%

% The EKF object updates its state at each time step, and invokes the

% state update methods of the vehicle object. The complete history of estimated

% state and covariance is stored within the EKF object.

%

% Methods::

% run run the filter

% plot_xy plot the actual path of the vehicle

% plot_P plot the estimated covariance norm along the path

% plot_map plot estimated landmark points and confidence limits

% plot_vehicle plot estimated vehicle covariance ellipses

% plot_error plot estimation error with standard deviation bounds

% display print the filter state in human readable form

% char convert the filter state to human readable string

%

% Properties::

% x_est estimated state

% P estimated covariance

% V_est estimated odometry covariance

% W_est estimated sensor covariance

% landmarks maps sensor landmark id to filter state element

% robot reference to the Vehicle object

% sensor reference to the Sensor subclass object

% history vector of structs that hold the detailed filter state from

% each time step

% verbose show lots of detail (default false)

% joseph use Joseph form to represent covariance (default true)

%

% Vehicle position estimation (localization)::

%

% Create a vehicle with odometry covariance V, add a driver to it,

% create a Kalman filter with estimated covariance V_est and initial

% state covariance P0

% veh = Vehicle(V);

% veh.add_driver( RandomPath(20, 2) );

% ekf = EKF(veh, V_est, P0);

% We run the simulation for 1000 time steps

% ekf.run(1000);

% then plot true vehicle path

% veh.plot_xy(‘b’);

% and overlay the estimated path

% ekf.plot_xy(‘r’);

% and overlay uncertainty ellipses

% ekf.plot_ellipse(‘g’);

% We can plot the covariance against time as

% clf

% ekf.plot_P();

%

% Map-based vehicle localization::

%

% Create a vehicle with odometry covariance V, add a driver to it,

% create a map with 20 point landmarks, create a sensor that uses the map

% and vehicle state to estimate landmark range and bearing with covariance

% W, the Kalman filter with estimated covariances V_est and W_est and initial

% vehicle state covariance P0

% veh = Bicycle(V);

% veh.add_driver( RandomPath(20, 2) );

% map = LandmarkMap(20);

% sensor = RangeBearingSensor(veh, map, W);

% ekf = EKF(veh, V_est, P0, sensor, W_est, map);

% We run the simulation for 1000 time steps

% ekf.run(1000);

% then plot the map and the true vehicle path

% map.plot();

% veh.plot_xy(‘b’);

% and overlay the estimatd path

% ekf.plot_xy(‘r’);

% and overlay uncertainty ellipses

% ekf.plot_ellipse(‘g’);

% We can plot the covariance against time as

% clf

% ekf.plot_P();

%

% Vehicle-based map making::

%

% Create a vehicle with odometry covariance V, add a driver to it,

% create a sensor that uses the map and vehicle state to estimate landmark range

% and bearing with covariance W, the Kalman filter with estimated sensor

% covariance W_est and a “perfect” vehicle (no covariance),

% then run the filter for N time steps.

%

% veh = Vehicle(V);

% veh.add_driver( RandomPath(20, 2) );

% map = LandmarkMap(20);

% sensor = RangeBearingSensor(veh, map, W);

% ekf = EKF(veh, [], [], sensor, W_est, []);

% We run the simulation for 1000 time steps

% ekf.run(1000);

% Then plot the true map

% map.plot();

% and overlay the estimated map with 97% confidence ellipses

% ekf.plot_map(‘g’, ‘confidence’, 0.97);

%

% Simultaneous localization and mapping (SLAM)::

%

% Create a vehicle with odometry covariance V, add a driver to it,

% create a map with 20 point landmarks, create a sensor that uses the map

% and vehicle state to estimate landmark range and bearing with covariance

% W, the Kalman filter with estimated covariances V_est and W_est and initial

% state covariance P0, then run the filter to estimate the vehicle state at

% each time step and the map.

%

% veh = Vehicle(V);

% veh.add_driver( RandomPath(20, 2) );

% map = PointMap(20);

% sensor = RangeBearingSensor(veh, map, W);

% ekf = EKF(veh, V_est, P0, sensor, W, []);

% We run the simulation for 1000 time steps

% ekf.run(1000);

% then plot the map and the true vehicle path

% map.plot();

% veh.plot_xy(‘b’);

% and overlay the estimated path

% ekf.plot_xy(‘r’);

% and overlay uncertainty ellipses

% ekf.plot_ellipse(‘g’);

% We can plot the covariance against time as

% clf

% ekf.plot_P();

% Then plot the true map

% map.plot();

% and overlay the estimated map with 3 sigma ellipses

% ekf.plot_map(3, ‘g’);

%

% References::

%

% Robotics, Vision & Control, Chap 6,

% Peter Corke,

% Springer 2011

%

% Stochastic processes and filtering theory,

% AH Jazwinski

% Academic Press 1970

%

% Acknowledgement::

%

% Inspired by code of Paul Newman, Oxford University,

% http://www.robots.ox.ac.uk/~pnewman

%

% See also Vehicle, RandomPath, RangeBearingSensor, PointMap, ParticleFilter.

% Copyright (C) 1993-2017, by Peter I. Corke

%

% This file is part of The Robotics Toolbox for MATLAB (RTB).

%

% RTB is free software: you can redistribute it and/or modify

% it under the terms of the GNU Lesser General Public License as published by

% the Free Software Foundation, either version 3 of the License, or

% (at your option) any later version.

%

% RTB is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU Lesser General Public License for more details.

%

% You should have received a copy of the GNU Leser General Public License

% along with RTB. If not, see .

%

% http://www.petercorke.com

classdef EKF < handle

%TODO

% add a hook for data association

% show landmark covar as ellipse or pole

% show vehicle covar as ellipse

% show track

% landmarks property should be an array of structs

properties

% STATE:

% the state vector is [x_vehicle x_map] where

% x_vehicle is 1×3 and

% x_map is 1x(2N) where N is the number of map landmarks

x_est % estimated state

P_est % estimated covariance

% landmarks keeps track of landmarks we’ve seen before.

% Each column represents a landmark. This is a fixed size

% array, indexed by landmark id.

% row 1: the start of this landmark’s state in the state vector, initially NaN

% row 2: the number of times we’ve sighted the landmark

landmarks % map state

V_est % estimate of covariance V

W_est % estimate of covariance W

robot % reference to the robot vehicle

sensor % reference to the sensor

% FLAGS:

% estVehicle estMap

% 0 0

% 0 1 make map

% 1 0 dead reckoning

% 1 1 SLAM

estVehicle % flag: estimating vehicle location

estMap % flag: estimating map

joseph % flag: use Joseph form to compute p

verbose

keepHistory % keep history

P0 % passed initial covariance

map % passed map

% HISTORY:

% vector of structs to hold EKF history

% .x_est estimated state

% .odo vehicle odometry

% .P estimated covariance matrix

% .innov innovation

% .S

% .K Kalman gain matrix

history

dim % robot workspace dimensions

end

methods

% constructor

function ekf = EKF(robot, V_est, P0, varargin)

%EKF.EKF EKF object constructor

%

% E = EKF(VEHICLE, V_EST, P0, OPTIONS) is an EKF that estimates the state

% of the VEHICLE (subclass of Vehicle) with estimated odometry covariance V_EST (2×2) and

% initial covariance (3×3).

%

% E = EKF(VEHICLE, V_EST, P0, SENSOR, W_EST, MAP, OPTIONS) as above but

% uses information from a VEHICLE mounted sensor, estimated

% sensor covariance W_EST and a MAP (LandmarkMap class).

%

% Options::

% ‘verbose’ Be verbose.

% ‘nohistory’ Don’t keep history.

% ‘joseph’ Use Joseph form for covariance

% ‘dim’,D Dimension of the robot’s workspace.

% – D scalar; X: -D to +D, Y: -D to +D

% – D (1×2); X: -D(1) to +D(1), Y: -D(2) to +D(2)

% – D (1×4); X: D(1) to D(2), Y: D(3) to D(4)

%

% Notes::

% – If MAP is [] then it will be estimated.

% – If V_EST and P0 are [] the vehicle is assumed error free and

% the filter will only estimate the landmark positions (map).

% – If V_EST and P0 are finite the filter will estimate the

% vehicle pose and the landmark positions (map).

% – EKF subclasses Handle, so it is a reference object.

% – Dimensions of workspace are normally taken from the map if given.

%

% See also Vehicle, Bicycle, Unicycle, Sensor, RangeBearingSensor, LandmarkMap.

opt.history = true;

opt.joseph = true;

opt.dim = [];

[opt,args] = tb_optparse(opt, varargin);

% copy options to class properties

ekf.verbose = opt.verbose;

ekf.keepHistory = opt.history;

ekf.joseph = opt.joseph;

ekf.P0 = P0;

ekf.dim = opt.dim;

% figure what we need to estimate

ekf.estVehicle = false;

ekf.estMap = false;

switch length(args)

case 0

% Deadreckoning:

% E = EKF(VEHICLE, V_EST, P0, OPTIONS)

sensor = []; W_est = []; map = [];

ekf.estVehicle = true;

case 3

% Using a map:

% E = EKF(VEHICLE, V_EST, P0, SENSOR, W_EST, MAP, OPTIONS)

% Estimating a map:

% E = EKF(VEHICLE,[], [], SENSOR, W_EST, [], OPTIONS)

% Full SLAM:

% E = EKF(VEHICLE, V_EST, P0, SENSOR, W_EST, [], OPTIONS)

[sensor, W_est, map] = deal(args{:});

if isempty(map)

ekf.estMap = true;

end

if ~isempty(V_est)

ekf.estVehicle = true;

end

otherwise

error(‘RTB:EKF:badarg’, ‘incorrect number of non-option arguments’);

end

% check types for passed objects

if ~isempty(map) && ~isa(map, ‘LandmarkMap’)

error(‘RTB:EKF:badarg’, ‘expecting LandmarkMap object’);

end

if ~isempty(sensor) && ~isa(sensor, ‘Sensor’)

error(‘RTB:EKF:badarg’, ‘expecting Sensor object’);

end

if ~isa(robot, ‘Vehicle’)

error(‘RTB:EKF:badarg’, ‘expecting Vehicle object’);

end

% copy arguments to class properties

ekf.robot = robot;

ekf.V_est = V_est;

ekf.sensor = sensor;

ekf.map = map;

ekf.W_est = W_est;

ekf.init();

end

function init(ekf)

%EKF.init Reset the filter

%

% E.init() resets the filter state and clears landmarks and history.

ekf.robot.init();

% clear the history

ekf.history = [];

if isempty(ekf.V_est)

% perfect vehicle case

ekf.estVehicle = false;

ekf.x_est = [];

ekf.P_est = [];

else

% noisy odometry case

ekf.x_est = ekf.robot.x(:); % column vector

ekf.P_est = ekf.P0;

ekf.estVehicle = true;

end

if ~isempty(ekf.sensor)

ekf.landmarks = NaN*zeros(2, ekf.sensor.map.nlandmarks);

end

end

function run(ekf, n, varargin)

%EKF.run Run the filter

%

% E.run(N, OPTIONS) runs the filter for N time steps and shows an animation

% of the vehicle moving.

%

% Options::

% ‘plot’ Plot an animation of the vehicle moving

%

% Notes::

% – All previously estimated states and estimation history are initially

% cleared.

opt.plot = true;

opt.movie = [];

opt = tb_optparse(opt, varargin);

ekf.init();

if opt.plot

if ~isempty(ekf.sensor)

ekf.sensor.map.plot();

elseif ~isempty(ekf.dim)

switch length(ekf.dim)

case 1

d = ekf.dim;

axis([-d d -d d]);

case 2

w = ekf.dim(1), h = ekf.dim(2);

axis([-w w -h h]);

case 4

axis(ekf.dim);

end

set(gca, ‘ALimMode’, ‘manual’);

else

opt.plot = false;

end

axis manual

xlabel(‘X’); ylabel(‘Y’)

end

% simulation loop

anim = Animate(opt.movie);

for k=1:n

if opt.plot

ekf.robot.plot();

drawnow

end

ekf.step(opt);

anim.add();

end

anim.close();

end

function xyt = get_xy(ekf)

%EKF.plot_xy Get vehicle position

%

% P = E.get_xy() is the estimated vehicle pose trajectory

% as a matrix (Nx3) where each row is x, y, theta.

%

% See also EKF.plot_xy, EKF.plot_error, EKF.plot_ellipse, EKF.plot_P.

if ekf.estVehicle

xyt = zeros(length(ekf.history), 3);

for i=1:length(ekf.history)

h = ekf.history(i);

xyt(i,:) = h.x_est(1:3)’;

end

else

xyt = [];

end

end

function out = plot_xy(ekf, varargin)

%EKF.plot_xy Plot vehicle position

%

% E.plot_xy() overlay the current plot with the estimated vehicle path in

% the xy-plane.

%

% E.plot_xy(LS) as above but the optional line style arguments

% LS are passed to plot.

%

% See also EKF.get_xy, EKF.plot_error, EKF.plot_ellipse, EKF.plot_P.

xyt=ekf.get_xy();

plot(xyt(:,1), xyt(:,2), varargin{:});

plot(xyt(1,1), xyt(1,2), ‘ko’, ‘MarkerSize’, 8, ‘LineWidth’, 2);

end

function out = plot_error(ekf, varargin)

%EKF.plot_error Plot vehicle position

%

% E.plot_error(OPTIONS) plot the error between actual and estimated vehicle

% path (x, y, theta) versus time. Heading error is wrapped into the range [-pi,pi)

%

% Options::

% ‘bound’,S Display the confidence bounds (default 0.95).

% ‘color’,C Display the bounds using color C

% LS Use MATLAB linestyle LS for the plots

%

% Notes::

% – The bounds show the instantaneous standard deviation associated

% with the state. Observations tend to decrease the uncertainty

% while periods of dead-reckoning increase it.

% – Set bound to zero to not draw confidence bounds.

% – Ideally the error should lie “mostly” within the +/-3sigma

% bounds.

%

% See also EKF.plot_xy, EKF.plot_ellipse, EKF.plot_P.

opt.color = ‘r’;

opt.confidence = 0.95;

opt.nplots = 3;

[opt,args] = tb_optparse(opt, varargin);

clf

if ekf.estVehicle

err = zeros(length(ekf.history), 3);

for i=1:length(ekf.history)

h = ekf.history(i);

% error is true – estimated

err(i,:) = ekf.robot.x_hist(i,:) – h.x_est(1:3)’;

err(i,3) = angdiff(err(i,3));

P = diag(h.P);

pxy(i,:) = sqrt( chi2inv_rtb(opt.confidence, 2)*P(1:3) );

end

if nargout == 0

clf

t = 1:numrows(pxy);

t = [t t(end:-1:1)]’;

subplot(opt.nplots*100+11)

if opt.confidence

edge = [pxy(:,1); -pxy(end:-1:1,1)];

h = patch(t, edge ,opt.color);

set(h, ‘EdgeColor’, ‘none’, ‘FaceAlpha’, 0.3);

end

hold on

plot(err(:,1), args{:});

hold off

grid

ylabel(‘x error’)

subplot(opt.nplots*100+12)

if opt.confidence

edge = [pxy(:,2); -pxy(end:-1:1,2)];

h = patch(t, edge, opt.color);

set(h, ‘EdgeColor’, ‘none’, ‘FaceAlpha’, 0.3);

end

hold on

plot(err(:,2), args{:});

hold off

grid

ylabel(‘y error’)

subplot(opt.nplots*100+13)

if opt.confidence

edge = [pxy(:,3); -pxy(end:-1:1,3)];

h = patch(t, edge, opt.color);

set(h, ‘EdgeColor’, ‘none’, ‘FaceAlpha’, 0.3);

end

hold on

plot(err(:,3), args{:});

hold off

grid

xlabel(‘Time step’)

ylabel(‘\theta error’)

if opt.nplots > 3

subplot(opt.nplots*100+14);

end

else

out = pxy;

end

end

end

function xy = get_map(ekf, varargin)

%EKF.get_map Get landmarks

%

% P = E.get_map() is the estimated landmark coordinates (2xN) one per

% column. If the landmark was not estimated the corresponding column

% contains NaNs.

%

% See also EKF.plot_map, EKF.plot_ellipse.

xy = [];

for i=1:numcols(ekf.landmarks)

n = ekf.landmarks(1,i);

if isnan(n)

% this landmark never observed

xy = [xy [NaN; NaN]];

continue;

end

% n is an index into the *landmark* part of the state

% vector, we need to offset it to account for the vehicle

% state if we are estimating vehicle as well

if ekf.estVehicle

n = n + 3;

end

xf = ekf.x_est(n:n+1);

xy = [xy xf];

end

end

function plot_map(ekf, varargin)

%EKF.plot_map Plot landmarks

%

% E.plot_map(OPTIONS) overlay the current plot with the estimated landmark

% position (a +-marker) and a covariance ellipses.

%

% E.plot_map(LS, OPTIONS) as above but pass line style arguments

% LS to plot_ellipse.

%

% Options::

% ‘confidence’,C Draw ellipse for confidence value C (default 0.95)

%

% See also EKF.get_map, EKF.plot_ellipse.

% TODO: some option to plot map evolution, layered ellipses

opt.confidence = 0.95;

[opt,args] = tb_optparse(opt, varargin);

xy = [];

for i=1:numcols(ekf.landmarks)

n = ekf.landmarks(1,i);

if isnan(n)

% this landmark never observed

xy = [xy [NaN; NaN]];

continue;

end

% n is an index into the *landmark* part of the state

% vector, we need to offset it to account for the vehicle

% state if we are estimating vehicle as well

if ekf.estVehicle

n = n + 3;

end

xf = ekf.x_est(n:n+1);

P = ekf.P_est(n:n+1,n:n+1);

% TODO reinstate the interval landmark

%plot_ellipse(xf, P, interval, 0, [], varargin{:});

plot_ellipse( P * chi2inv_rtb(opt.confidence, 2), xf, args{:});

plot(xf(1), xf(2), ‘k.’, ‘MarkerSize’, 10)

end

end

function P = get_P(ekf, k)

%EKF.get_P Get covariance magnitude

%

% E.get_P() is a vector of estimated covariance magnitude at each time step.

P = zeros(length(ekf.history),1);

for i=1:length(ekf.history)

P(i) = sqrt(det(ekf.history(i).P));

end

end

function plot_P(ekf, varargin)

%EKF.plot_P Plot covariance magnitude

%

% E.plot_P() plots the estimated covariance magnitude against

% time step.

%

% E.plot_P(LS) as above but the optional line style arguments

% LS are passed to plot.

p = ekf.get_P();

plot(p, varargin{:});

xlabel(‘Time step’);

ylabel(‘(det P)^{0.5}’)

end

function show_P(ekf, k)

clf

if nargin < 2

k = length(ekf.history);

end

z = log10(abs(ekf.history(k).P));

mn = min(z(~isinf(z)))

z(isinf(z)) = mn;

cmap = flip( gray(256), 1);

%colormap(parula);

colormap(flipud(bone))

c = gray;

c = [ones(numrows(c),1) 1-c(:,1:2)];

colormap(c)

% imshow(z, …

% ‘DisplayRange’, [min(z(:)) max(z(:))], …

% ‘ColorMap’, cmap, …

% ‘InitialMagnification’, ‘fit’ )

image(z, ‘CDataMapping’, ‘scaled’)

xlabel(‘state’); ylabel(‘state’);

c = colorbar();

c.Label.String = ‘log covariance’;

end

function plot_ellipse(ekf, varargin)

%EKF.plot_ellipse Plot vehicle covariance as an ellipse

%

% E.plot_ellipse() overlay the current plot with the estimated

% vehicle position covariance ellipses for 20 points along the

% path.

%

% E.plot_ellipse(LS) as above but pass line style arguments

% LS to plot_ellipse.

%

% Options::

% ‘interval’,I Plot an ellipse every I steps (default 20)

% ‘confidence’,C Confidence interval (default 0.95)

%

% See also plot_ellipse.

opt.interval = round(length(ekf.history)/20);

opt.confidence = 0.95;

[opt,args] = tb_optparse(opt, varargin);

holdon = ishold;

hold on

for i=1:opt.interval:length(ekf.history)

h = ekf.history(i);

%plot_ellipse(h.x_est(1:2), h.P(1:2,1:2), 1, 0, [], varargin{:});

plot_ellipse(h.P(1:2,1:2) * chi2inv_rtb(opt.confidence, 2), h.x_est(1:2), args{:});

end

if ~holdon

hold off

end

end

function display(ekf)

%EKF.display Display status of EKF object

%

% E.display() displays the state of the EKF object in

% human-readable form.

%

% Notes::

% – This method is invoked implicitly at the command line when the result

% of an expression is a EKF object and the command has no trailing

% semicolon.

%

% See also EKF.char.

loose = strcmp( get(0, ‘FormatSpacing’), ‘loose’);

if loose

disp(‘ ‘);

end

disp([inputname(1), ‘ = ‘])

disp( char(ekf) );

end % display()

function s = char(ekf)

%EKF.char Convert to string

%

% E.char() is a string representing the state of the EKF

% object in human-readable form.

%

% See also EKF.display.

s = sprintf(‘EKF object: %d states’, length(ekf.x_est));

e = ”;

if ekf.estVehicle

e = [e ‘Vehicle ‘];

end

if ekf.estMap

e = [e ‘Map ‘];

end

s = char(s, [‘ estimating: ‘ e]);

if ~isempty(ekf.robot)

s = char(s, char(ekf.robot));

end

if ~isempty(ekf.sensor)

s = char(s, char(ekf.sensor));

end

s = char(s, [‘W_est: ‘ mat2str(ekf.W_est, 3)] );

s = char(s, [‘V_est: ‘ mat2str(ekf.V_est, 3)] );

end

end % method

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% P R I V A T E M E T H O D S

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

methods (Access=protected)

function x_est = step(ekf, opt)

%fprintf(‘——-step\n’);

% move the robot along its path and get odometry

odo = ekf.robot.step();

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% do the prediction

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if ekf.estVehicle

% split the state vector and covariance into chunks for

% vehicle and map

xv_est = ekf.x_est(1:3);

xm_est = ekf.x_est(4:end);

Pvv_est = ekf.P_est(1:3,1:3);

Pmm_est = ekf.P_est(4:end,4:end);

Pvm_est = ekf.P_est(1:3,4:end);

else

xm_est = ekf.x_est;

%Pvv_est = ekf.P_est;

Pmm_est = ekf.P_est;

end

if ekf.estVehicle

% evaluate the state update function and the Jacobians

% if vehicle has uncertainty, predict its covariance

xv_pred = ekf.robot.f(xv_est’, odo)’;

Fx = ekf.robot.Fx(xv_est, odo);

Fv = ekf.robot.Fv(xv_est, odo);

Pvv_pred = Fx*Pvv_est*Fx’ + Fv*ekf.V_est*Fv’;

else

% otherwise we just take the true robot state

xv_pred = ekf.robot.x;

end

if ekf.estMap

if ekf.estVehicle

% SLAM case, compute the correlations

Pvm_pred = Fx*Pvm_est;

end

Pmm_pred = Pmm_est;

xm_pred = xm_est;

end

% put the chunks back together again

if ekf.estVehicle && ~ekf.estMap

% vehicle only

x_pred = xv_pred;

P_pred = Pvv_pred;

elseif ~ekf.estVehicle && ekf.estMap

% map only

x_pred = xm_pred;

P_pred = Pmm_pred;

elseif ekf.estVehicle && ekf.estMap

% vehicle and map

x_pred = [xv_pred; xm_pred];

P_pred = [ Pvv_pred Pvm_pred; Pvm_pred’ Pmm_pred];

end

% at this point we have:

% xv_pred the state of the vehicle to use to

% predict observations

% xm_pred the state of the map

% x_pred the full predicted state vector

% P_pred the full predicted covariance matrix

% initialize the variables that might be computed during

% the update phase

doUpdatePhase = false;

%fprintf(‘x_pred:’); x_pred’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% process observations

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sensorReading = false;

if ~isempty(ekf.sensor)

% read the sensor

[z,js] = ekf.sensor.reading();

% test if the sensor has returned a reading at this time interval

sensorReading = js > 0;

end

if sensorReading

% here for MBL, MM, SLAM

% compute the innovation

z_pred = ekf.sensor.h(xv_pred’, js)’;

innov(1) = z(1) – z_pred(1);

innov(2) = angdiff(z(2), z_pred(2));

if ekf.estMap

% the map is estimated MM or SLAM case

if ekf.seenBefore(js)

% get previous estimate of its state

jx = ekf.landmarks(1,js);

xf = xm_pred(jx:jx+1);

% compute Jacobian for this particular landmark

Hx_k = ekf.sensor.Hp(xv_pred’, xf);

% create the Jacobian for all landmarks

Hx = zeros(2, length(xm_pred));

Hx(:,jx:jx+1) = Hx_k;

Hw = ekf.sensor.Hw(xv_pred, xf);

if ekf.estVehicle

% concatenate Hx for for vehicle and map

Hxv = ekf.sensor.Hx(xv_pred’, xf);

Hx = [Hxv Hx];

end

doUpdatePhase = true;

% if mod(i, 40) == 0

% plot_ellipse(x_est(jx:jx+1), P_est(jx:jx+1,jx:jx+1), 5);

% end

else

% get the extended state

[x_pred, P_pred] = ekf.extendMap(P_pred, xv_pred, xm_pred, z, js);

doUpdatePhase = false;

end

else

% the map is given, MBL case

Hx = ekf.sensor.Hx(xv_pred’, js);

Hw = ekf.sensor.Hw(xv_pred’, js);

doUpdatePhase = true;

end

end

% doUpdatePhase flag indicates whether or not to do

% the update phase of the filter

%

% DR always false

% map-based localization if sensor reading

% map creation if sensor reading & not first

% sighting

% SLAM if sighting of a previously

% seen landmark

if doUpdatePhase

%fprintf(‘do update\n’);

%% we have innovation, update state and covariance

% compute x_est and P_est

% compute innovation covariance

S = Hx*P_pred*Hx’ + Hw*ekf.W_est*Hw’;

% compute the Kalman gain

K = P_pred*Hx’ / S;

% update the state vector

x_est = x_pred + K*innov’;

if ekf.estVehicle

% wrap heading state for a vehicle

x_est(3) = angdiff(x_est(3));

end

% update the covariance

if ekf.joseph

% we use the Joseph form

I = eye(size(P_pred));

P_est = (I-K*Hx)*P_pred*(I-K*Hx)’ + K*ekf.W_est*K’;

else

P_est = P_pred – K*S*K’;

end

% enforce P to be symmetric

P_est = 0.5*(P_est+P_est’);

else

% no update phase, estimate is same as prediction

x_est = x_pred;

P_est = P_pred;

innov = [];

S = [];

K = [];

end

%fprintf(‘X:’); x_est’

% update the state and covariance for next time

ekf.x_est = x_est;

ekf.P_est = P_est;

% record time history

if ekf.keepHistory

hist = [];

hist.x_est = x_est;

hist.odo = odo;

hist.P = P_est;

hist.innov = innov;

hist.S = S;

hist.K = K;

ekf.history = [ekf.history hist];

end

end

function s = seenBefore(ekf, jf)

if ~isnan(ekf.landmarks(1,jf))

%% we have seen this landmark before, update number of sightings

if ekf.verbose

fprintf(‘landmark %d seen %d times before, state_idx=%d\n’, …

jf, ekf.landmarks(2,jf), ekf.landmarks(1,jf));

end

ekf.landmarks(2,jf) = ekf.landmarks(2,jf)+1;

s = true;

else

s = false;

end

end

function [x_ext, P_ext] = extendMap(ekf, P, xv, xm, z, jf)

%% this is a new landmark, we haven’t seen it before

% estimate position of landmark in the world based on

% noisy sensor reading and current vehicle pose

if ekf.verbose

fprintf(‘landmark %d first sighted\n’, jf);

end

% estimate its position based on observation and vehicle state

xf = ekf.sensor.g(xv, z);

% append this estimate to the state vector

if ekf.estVehicle

x_ext = [xv; xm; xf];

else

x_ext = [xm; xf];

end

% get the Jacobian for the new landmark

Gz = ekf.sensor.Gz(xv, z);

% extend the covariance matrix

if ekf.estVehicle

Gx = ekf.sensor.Gx(xv, z);

n = length(ekf.x_est);

M = [eye(n) zeros(n,2); Gx zeros(2,n-3) Gz];

P_ext = M*blkdiag(P, ekf.W_est)*M’;

else

P_ext = blkdiag(P, Gz*ekf.W_est*Gz’);

end

% record the position in the state vector where this

% landmark’s state starts

ekf.landmarks(1,jf) = length(xm)+1;

%ekf.landmarks(1,jf) = length(ekf.x_est)-1;

ekf.landmarks(2,jf) = 1; % seen it once

if ekf.verbose

fprintf(‘extended state vector\n’);

end

% plot an ellipse at this time

% jx = landmarks(1,jf);

% plot_ellipse(x_est(jx:jx+1), P_est(jx:jx+1,jx:jx+1), 5);

end

end % private methods

end % classdef

function f = chi2inv_rtb(confidence, n)

assert(n == 2, ‘chi2inv_rtb: only valid for 2DOF’);

c = linspace(0,1,101);

% build a lookup table:

%x = chi2inv(c,2)

%fprintf(‘%f ‘);

x = [0.000000 0.020101 0.040405 0.060918 0.081644 0.102587 0.123751 0.145141 0.166763 0.188621 0.210721 0.233068 0.255667 0.278524 0.301646 0.325038 0.348707 0.372659 0.396902 0.421442 0.446287 0.471445 0.496923 0.522730 0.548874 0.575364 0.602210 0.629421 0.657008 0.684981 0.713350 0.742127 0.771325 0.800955 0.831031 0.861566 0.892574 0.924071 0.956072 0.988593 1.021651 1.055265 1.089454 1.124238 1.159637 1.195674 1.232372 1.269757 1.307853 1.346689 1.386294 1.426700 1.467938 1.510045 1.553058 1.597015 1.641961 1.687940 1.735001 1.783196 1.832581 1.883217 1.935168 1.988505 2.043302 2.099644 2.157619 2.217325 2.278869 2.342366 2.407946 2.475749 2.545931 2.618667 2.694147 2.772589 2.854233 2.939352 3.028255 3.121295 3.218876 3.321462 3.429597 3.543914 3.665163 3.794240 3.932226 4.080442 4.240527 4.414550 4.605170 4.815891 5.051457 5.318520 5.626821 5.991465 6.437752 7.013116 7.824046 9.210340 Inf];

f = interp1(c, x, confidence);

end

一键复制

编辑

Web IDE

原始数据

按行查看

历史