罗德里格斯公式推导

  • Post author:
  • Post category:其他




罗德里格斯公式推导



第一部分

请添加图片描述

向量



v

=

(

v

x

,

v

y

,

v

z

)

T

v=(v_{x},v_{y},v_{z})^{T}






v




=








(



v











x



















,





v











y



















,





v











z




















)











T















单位

方向矢量



n

=

(

n

x

,

n

y

,

n

z

)

T

n=(n_{x},n_{y},n_{z})^{T}






n




=








(



n











x



















,





n











y



















,





n











z




















)











T













转过角度



θ

\theta






θ





得到向量



v

r

o

t

v_{rot}







v











ro


t






















.





v

=

(

v

n

)

n

w

=

(

n

×

v

)

v

=

v

v

=

v

(

v

n

)

n

v

=

n

×

w

=

n

×

(

n

×

v

)

v

=

v

+

n

×

(

n

×

v

)

v_{||}=(v \cdot n)n\\ w= (n\times v)\\ v_{\perp}=v-v_{||}=v-(v \cdot n)n\\ v_{\perp}=-n\times w = -n\times (n\times v)\\ v_{||}=v+n\times (n\times v)







v











∣∣





















=








(


v













n


)


n








w




=








(


n




×








v


)









v

































=








v














v











∣∣





















=








v













(


v













n


)


n









v

































=











n




×








w




=











n




×








(


n




×








v


)









v











∣∣





















=








v




+








n




×








(


n




×








v


)









n

×

v

 

=

 

i

j

k

n

x

n

y

n

z

v

x

v

y

v

z

=

 

[

0

n

z

n

y

n

z

0

n

x

n

y

n

x

0

]

[

v

x

v

y

v

z

]

 

=

 

N

v

 

=

 

n

×

v

n\times v\ =\ \left|\begin{array}{ccc}\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ n_x & n_y & n_z \\ v_x & v_y & v_z \end{array}\right| = \ \left[\begin{array}{ccc} 0 & -n_z & n_y \\ n_z & 0 & -n_x \\ -n_y & n_x & 0 \end{array}\right] \left[\begin{array}{c}v_x \\ v_y \\ v_z \end{array}\right]\ = \ Nv\ =\ n^{\times}v






n




×








v






=



















































i











n










x

























v










x















































j











n










y

























v










y















































k











n










z

























v










z


































































=

















































0









n










z




























n










y

















































n










z
























0









n










x














































n










y




























n










x
























0


























































































v










x

























v










y

























v










z




































































=










N


v






=











n











×










v









v

r

o

t

=

v

+

v

cos

θ

+

w

sin

θ

=

v

+

n

×

(

n

×

v

)

n

×

(

n

×

v

)

cos

θ

+

(

n

×

v

)

sin

θ

=

v

+

(

1

cos

θ

)

N

2

v

+

N

v

sin

θ

=

[

I

+

(

1

cos

θ

)

N

2

+

N

sin

θ

]

v

=

R

v

\begin{aligned} v_{rot}&=v_{||}+v_{\perp}\cos \theta +w\sin \theta \\ &=v+n\times (n\times v) -n\times (n\times v)\cos \theta +(n\times v)\sin \theta \\ &=v+(1-\cos \theta )N^{2}v+Nv\sin \theta \\ &=[I+(1-\cos \theta )N^{2}+N\sin \theta ]v \\ &= Rv \end{aligned}

















v











ro


t






































































=





v











∣∣





















+





v

































cos




θ




+




w




sin




θ












=




v




+




n




×




(


n




×




v


)









n




×




(


n




×




v


)




cos




θ




+




(


n




×




v


)




sin




θ












=




v




+




(


1









cos




θ


)



N











2










v




+




N


v




sin




θ












=




[


I




+




(


1









cos




θ


)



N











2












+




N




sin




θ


]


v












=




R


v






















其中





N

2

=

N

N

=

[

n

y

2

n

z

2

n

x

n

y

n

x

n

z

n

x

n

y

n

x

2

n

z

2

n

y

n

z

n

x

n

z

n

y

n

z

n

x

2

n

y

2

]

=

[

n

x

2

1

n

x

n

y

n

x

n

z

n

x

n

y

n

y

2

1

n

y

n

z

n

x

n

z

n

y

n

z

n

z

2

1

]

=

n

n

T

I

\begin{aligned} N^{2}=N\cdot N &=\left[\begin{array}{ccc} -n_{y}^{2}-n_{z}^{2} & n_{x}n_{y} & n_{x}n_{z} \\ n_{x}n_{y} & -n_{x}^{2}-n_{z}^{2} & n_{y}n_{z} \\ n_{x}n_{z} & n_{y}n_{z} & -n_{x}^{2}-n_{y}^{2} \end{array}\right]\\ &=\left[\begin{array}{ccc} n_{x}^{2}-1 & n_{x}n_{y} & n_{x}n_{z} \\ n_{x}n_{y} & n_{y}^{2}-1 & n_{y}n_{z} \\ n_{x}n_{z} & n_{y}n_{z} & n_{z}^{2}-1 \end{array}\right]\\ &= n \cdot n^{T} – I \end{aligned}

















N











2












=




N









N









































=















































n











y










2



























n











z










2


























n











x




















n











y


























n











x




















n











z















































n











x




















n











y





























n











x










2



























n











z










2


























n











y




















n











z















































n











x




















n











z


























n











y




















n











z





























n











x










2



























n











y










2











































































=












































n











x










2


























1









n











x




















n











y


























n











x




















n











z















































n











x




















n











y


























n











y










2


























1









n











y




















n











z















































n











x




















n











z


























n











y




















n











z


























n











z










2


























1


























































=




n










n











T

















I
























所以





R

=

I

+

(

1

cos

θ

)

N

2

+

N

sin

θ

=

I

+

(

1

cos

θ

)

(

n

n

T

I

)

+

N

sin

θ

=

I

cos

θ

+

(

1

cos

θ

)

n

n

T

+

N

sin

θ

\begin{aligned} R&=I+(1-\cos \theta )N^{2}+N\sin \theta \\ &=I+(1-\cos \theta )(n\cdot n^{T}-I)+N\sin \theta \\ &=I\cos \theta +(1-\cos \theta )n\cdot n^{T}+N\sin \theta \end{aligned}
















R









































=




I




+




(


1









cos




θ


)



N











2












+




N




sin




θ












=




I




+




(


1









cos




θ


)


(


n










n











T

















I


)




+




N




sin




θ












=




I




cos




θ




+




(


1









cos




θ


)


n










n











T












+




N




sin




θ
























第二部分

以上是向量



v

=

(

v

x

,

v

y

,

v

z

)

T

v=(v_{x},v_{y},v_{z})^{T}






v




=








(



v











x



















,





v











y



















,





v











z




















)











T















单位

方向矢量



n

=

(

n

x

,

n

y

,

n

z

)

T

n=(n_{x},n_{y},n_{z})^{T}






n




=








(



n











x



















,





n











y



















,





n











z




















)











T













共面。如果二者不共面,如下图



v

3

v_3







v










3





















,可以将



v

3

v_3







v










3





















平移,使



v

3

v_3







v










3

























n

n






n





共面再用上面公式.


或者使用





n

n






n





共面的



v

v






v









v

2

v_2







v










2





















构造



v

3

v_3







v










3





















,即



v

3

=

v

v

2

v_3=v-v_2







v










3




















=








v














v










2





















.

请添加图片描述

这里



v

v






v









v

2

v_2







v










2





















满足





v

r

o

t

=

[

I

+

(

1

cos

θ

)

N

2

+

N

sin

θ

]

v

v

2

r

o

t

=

[

I

+

(

1

cos

θ

)

N

2

+

N

sin

θ

]

v

2

\begin{aligned} v_{rot}&=[I+(1-\cos \theta )N^{2}+N\sin \theta ]v \\ v_{2rot}&=[I+(1-\cos \theta )N^{2}+N\sin \theta ]v_{2} \end{aligned}

















v











ro


t


























v











2


ro


t














































=




[


I




+




(


1









cos




θ


)



N











2












+




N




sin




θ


]


v












=




[


I




+




(


1









cos




θ


)



N











2












+




N




sin




θ


]



v











2









































所以向量



v

3

v_3







v










3























单位

方向矢量



n

=

(

n

x

,

n

y

,

n

z

)

T

n=(n_{x},n_{y},n_{z})^{T}






n




=








(



n











x



















,





n











y



















,





n











z




















)











T













转过角度



θ

\theta






θ





得到向量



v

3

r

o

t

v_{3rot}







v











3


ro


t






















的公式如下:





v

3

r

o

t

=

v

r

o

t

v

2

r

o

t

=

[

I

+

(

1

cos

θ

)

N

2

+

N

sin

θ

]

(

v

v

2

)

=

[

I

+

(

1

cos

θ

)

N

2

+

N

sin

θ

]

v

3

\begin{aligned} v_{3rot}&=v_{rot}-v_{2rot}\\ &=[I+(1-\cos \theta )N^{2}+N\sin \theta ](v-v_2)\\ &=[I+(1-\cos \theta )N^{2}+N\sin \theta ]v_3 \end{aligned}

















v











3


ro


t


























































=





v











ro


t



























v











2


ro


t





























=




[


I




+




(


1









cos




θ


)



N











2












+




N




sin




θ


]


(


v










v










2


















)












=




[


I




+




(


1









cos




θ


)



N











2












+




N




sin




θ


]



v










3








































由上可知:即使



v

3

v_3







v










3

























n

n






n





不共面,仍然满足罗德里格斯公式,因为这个空间是线性的.



版权声明:本文为Aaags原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。